
Part II — Coding and Cryptography
Based on lectures by Dr Stuart Martin and notes by thirdsgames.co.uk

Lent 2023

Contents

0 Modelling communication 3

1 Noiseless coding 5
1.1 Prefix-free codes . 5
1.2 Kraft’s inequality . 6
1.3 McMillan’s inequality . 7
1.4 Entropy . 7
1.5 Gibbs’ inequality . 8
1.6 Optimal codes . 9
1.7 Huffman coding . 11
1.8 Joint entropy . 13

2 Noisy channels 15
2.1 Decoding rules . 15
2.2 Error detection and correction . 17
2.3 Minimum Distance . 18
2.4 Covering Estimates . 19
2.5 Asymptotics . 21
2.6 Constructing new codes from old . 23

3 Information theory 25
3.1 Sources and information rate . 25
3.2 Asymptotic equipartition property . 27
3.3 Shannon’s first coding theorem . 28
3.4 Capacity . 29
3.5 Conditional entropy . 31
3.6 Shannon’s second coding theorem . 33
3.7 The Kelly criterion . 38

1

4 Algebraic coding theory 40
4.1 Linear codes . 40
4.2 Syndrome decoding . 42
4.3 Hamming codes . 44
4.4 Reed–Muller codes . 44
4.5 New codes from old (again) . 46
4.6 GRM Recap . 47
4.7 Cyclic Codes . 48
4.8 Reminders About Finite Fields . 51
4.9 BCH codes . 52

4.9.1 Decoding BCH Codes . 53
4.10 Shift registers . 56
4.11 The Berlekamp–Massey method . 57

5 Cryptography 58
5.1 Cryptosystems . 58
5.2 Breaking cryptosystems . 58
5.3 One-time pad . 61
5.4 Asymmetric ciphers . 62
5.5 Rabin cryptosystem . 63
5.6 RSA cryptosystem . 65
5.7 The RSA Cryptosystem . 66
5.8 Secrecy and attacks . 67
5.9 Elgamal Signature Scheme . 69
5.10 The digital signature algorithm - Not Lectured 70
5.11 Commitment schemes . 71

5.11.1 Using a Public Key Cryptosystem 71
5.11.2 Using Coding Theory - Not Lectured 72

5.12 Secret sharing schemes - Non Examinable 72

2

§0 Modelling communication

To reason about communication, we use the following model. We have a source which
knows a message, that uses an encoder to produce some code words. The code words
are sent through a channel, but errors and noise may be introduced in this channel. The
codewords are received by a decoder, which performs some form of error detection and
correction. The message is finally received by a receiver.

The source is often namedAlice, and the receiver is named Bob. There may be an agent
watching the channel called Eve, short for eavesdropper.

Examples of these ideas include the optical and electrical telegraph, SMS, postcodes,
CDs and their error correction, compression algorithms such as gzip, and PINs.

Given a source and a channel, modelled probabilistically, the basic problem is to design
an encoder and decoder to transmit messages economically (noiseless coding, compres-
sion) and reliably (noisy coding).

An example of noiseless coding is Morse code, where every letter is assigned a unique
sequence of dots and dashes, where more common letters are assigned shorter strings.
Noiseless coding is adapted to the source.

Here is an example of noisy coding. Each book has an ISBN a1a2 . . . a9a10 where the
a1, . . . , a9 are digits in {0, . . . , 9}, and a10 ∈ {0, . . . , 9, X} s.t. 11 |

∑10
j=1 jaj . This coding

system detects the common human errors of writing an incorrect digit and transposing
two adjacent digits. Noisy coding is adapted to the channel, which in this case is the
human reading the number and typing it into a computer.

Definition 0.1 (Communication Channel)
A communication channel accepts a string of symbols from a finite alphabet
A = {a1, . . . , ar} and outputs a string of symbols from another finite alphabet B =
{b1, . . . , bs}. It is modelled by the probabilities P (y1 . . . yn received | x1 . . . xn sent).

Definition 0.2 (Discrete Memoryless Channel)
A discrete memoryless channel (DMC) is a channel where pij = P(bj received |
ai sent) are the same for each channel use, and independent of all past and future
uses of the channel. Its channel matrix is the r × s stochastic matrix P = (pij).

Example 0.1
The binary symmetric channel with error probability p ∈ [0, 1] is a discrete
memoryless channel with input and output alphabets {0, 1}, where the channel

3

matrix is (
1− p p
p 1− p

)

Here, a symbol is transmitted correctly with probability 1− p. Usually, we assume
p < 1

2 .

Example 0.2
The binary erasure channel hasA = {0, 1} and B = {0, 1, ⋆}. The channel matrix is(

1− p 0 p
0 1− p p

)

p can be interpreted as the probability that the symbol received is unreadable. If ⋆
is received, we say that we have received a splurge error.

Definition 0.3
We model n uses of a channel by the nth extension, with input alphabet An and
output alphabet Bn. A code C of length n is a functionM→ An, whereM is a set
of messages. Implicitly, we also have a decoding rule Bn →M.

• The size of this code ism = |M|.

• The information rate of the code is ρ(C) = 1
n log2m.

• The error rate of the code is ê(C) = maxx∈M P (error | x sent).

Definition 0.4 (Capacity)
A channel can transmit reliably at rate R if there is a sequence of codes (Cn)∞

n=1
with each Cn a code of length n s.t. limn→∞ ρ(Cn) = R and limn→∞ ê(Cn) = 0. The
capacity of a channel is the supremum of all reliable transmission rates.

It is a nontrivial fact that the capacity of the binary symmetric channel with p < 1
2 is

nonzero. This is one of Shannon’s theorems, proven later.

4

§1 Noiseless coding

§1.1 Prefix-free codes

Let A be a finite alphabet. We write A⋆ for the set of strings of elements of A, defined
byA⋆ =

⋃
n≥0A

n. The concatenation of two strings x = x1 . . . xr and y = y1 . . . ys is the
string xy = x1 . . . xry1 . . . ys.

Definition 1.1 (Code)
Let A,B be alphabets. A code is a function c : A → B⋆. The codewords of c are the
elements of Im c.

Example 1.1 (Greek fire code)
Let A = {α, β, . . . , ω}, and B = {1, 2, 3, 4, 5}. We map c(α) = 11, c(β) =
12, . . . , c(ψ) = 53, c(ω) = 54. xy means to hold up x torches and another y torches
nearby. This code was described by the historian Polybius.

Example 1.2
Let A be a set of words in some dictionary. Let B be the letters of English
{A, . . . , Z, ␣} The code is to spell the word and follow with a space.

The general idea is to send a message x1, . . . , xn ∈ A⋆ as c(x1) . . . c(xn) ∈ B⋆. So c
extends to a function c⋆ : A⋆ → B⋆.

Definition 1.2 (Decipherable)
A code c is decipherable (or uniquely decodable) if c⋆ is injective.

If c is decipherable, each string in B⋆ corresponds to at most one message. It does not
suffice to require that c be injective. Consider A = {1, 2, 3, 4},B = {0, 1}, and let c(1) =
0, c(2) = 1, c(3) = 00, c(4) = 01. Then c⋆(114) = 0001 = c⋆(312).

Typically we define m = |A| and a = |B|. We say c is an a-ary code of size m. A
2-ary code is a binary code, and a 3-ary code is a ternary code. We aim to construct
decipherable codes with short word lengths. Assuming that c is injective, the following
codes are always decipherable.

1. a block code, where all codewords have the same length, such as in the Greek fire
code;

2. a comma code, which reserves a letter from B to signal the end of a word;

5

3. a prefix-free code, a code in which no codeword is a prefix of another codeword.

Block codes and comma codes are examples of prefix-free codes. Such codes require
no lookahead to determine if we have reached the end of a word, so such codes are
sometimes called instantaneous codes. One can easily find decipherable codes that are
not prefix-free.

§1.2 Kraft’s inequality

Definition 1.3 (Kraft’s Inequality)
Let A be an alphabet of size m, and B be an alphabet of size a. Let c : A → B⋆ be a
code with codewords are of length ℓ1, . . . , ℓm. Then, Kraft’s inequality is

m∑
i=1

a−ℓi ≤ 1

Theorem 1.1
A prefix-free code (with given codeword lengths) exists iff Kraft’s inequality holds.

Proof. Let us rewrite Kraft’s inequality as∑s
ℓ=1 nℓa

−ℓ ≤ 1, where nℓ is the number
of codewords of length ℓ, and s is the length of the longest codeword.

(=⇒): Suppose c : A → B⋆ is prefix-free. Then,

n1a
s−1 + n2a

s−2 + · · ·+ ns−1a+ ns ≤ as

since the left hand side counts the number of strings of length s in B with some
codeword of c as a prefix, and the right hand side counts the total number of strings
of length s. Dividing by as gives the desired result.

(⇐=): Now, suppose that∑s
ℓ=1 nℓa

−ℓ ≤ 1. We aim to construct a prefix-free code c
with nℓ codewords of length ℓ for all ℓ ≤ s. Proceed by induction on s.

The case s = 1 is clear; in this case, the inequality gives n1 ≤ a.

By the inductive hypothesis, we have constructed a prefix-free code ĉwith nℓ code-
words of length ℓ for all ℓ < s. The inequality gives n1a

s−1 + · · ·+ ns−1a+ ns ≤ as.
The first s − 1 terms on the left hand side gives the number of strings of length s
with some codeword of ĉ as a prefix. So we are free to add ns additional codewords
of length s to ĉ to form cwithout exhausting our supply of as total strings of length
s.

Remark 1. The proof of existence of such a code is constructive; one can choose code-
words in order of increasing length, ensuring that we do not introduce prefixes at each

6

stage.

§1.3 McMillan’s inequality

Theorem 1.2 (McMillan’s inequality)
Any decipherable code satisfies Kraft’s inequality.

Proof. Let c : A → B⋆ be decipherable with word lengths ℓ1, . . . , ℓm. Let
s = maxi≤m ℓi. For R ∈ N, we have(

m∑
i=1

a−ℓi

)R

=
Rs∑
ℓ=1

bℓa
−ℓ

where bℓ is the number of ways of choosing R codewords of total length ℓ. Since c
is decipherable, any string of length ℓ formed from codewords must correspond to
exactly one sequence of codewords. Hence, bℓ ≤

∣∣∣Bℓ
∣∣∣ = aℓ. The inequality therefore

gives (
m∑

i=1
a−ℓi

)R

≤ Rs =⇒
m∑

i=1
a−ℓi ≤ (Rs)

1
R

AsR→∞, the right hand side converges to 1, giving Kraft’s inequality as required.

Corollary 1.1
A decipherable code with prescribed word lengths exists iff a prefix-free code with
the same word lengths exists.

We can therefore restrict our attention to prefix-free codes.

§1.4 Entropy

Entropy is ameasure of ‘randomness’ or ‘uncertainty’ in an inputmessage. Suppose that
we have a r.v. X taking a finite number of values x1, . . . , xn with probability p1, . . . , pn.
Then, the entropy of this r.v. is the expected number of fair coin tosses required to
determine X .

Example 1.3
Suppose p1 = p2 = p3 = p4 = 1

4 . Identifying {x1, x2, x3, x4} = {00, 01, 10, 11}, we

7

would expect H(X) = 2.

Example 1.4
Suppose p1 = 1

2 , p2 = 1
4 , and p3 = p4 = 1

8 . Identifying {x1, x2, x3, x4} =
{0, 10, 110, 111}, we obtain H(X) = 1

2 · 1 + 1
4 · 2 + 1

8 · 3 + 1
8 · 3 = 7

4 .

In a sense, the first example is ‘more random’ than the second, as its entropy is higher.

Definition 1.4 (Entropy)
The entropy of a r.v. X taking a finite number of values x1, . . . , xn with probabilities
p1, . . . , pn is defined to be

H(X) = H(p1, . . . , pn) = −
n∑

i=1
pi log pi = −E [log pi]

where the logarithm is taken with base 2.

Note that H(X) ≥ 0, and equality holds exactly when X is constant with probability
1. It is measured in bits, binary digits. By convention, we write 0 log 0 = 0 (note that
x log x→ 0 as x→ 0).

Example 1.5
For a biased coin with probability p of a head, we writeH(p, 1−p) = H(p). We find

H(p) = −p log p− (1− p) log(1− p); H ′(p) = log 1− p
p

This graph is concave, taking a maximum value of 1 when p = 1
2 . If p = 0, 1 then

H(p) = 0.

§1.5 Gibbs’ inequality

Proposition 1.1 (Gibbs’ Inequality)
Let (p1, . . . , pn), (q1, . . . , qn) be discrete probability distributions. Then,

−
∑

pi log pi ≤ −
∑

pi log qi

with equality iff pi = qi.

The right hand side is sometimes called the cross entropy, or mixed entropy.

8

Proof. Since log x = ln x
ln 2 , we may replace the inequality with

−
∑

pi ln pi ≤ −
∑

pi ln qi

Define I = {i : pi 6= 0}. Now, ln x ≤ x − 1 for all x > 0, with equality iff x = 1.
Hence, ln qi

pi
≤ qi

pi
− 1 for all i ∈ I . Then,

∑
i∈I

pi ln qi

pi
≤
∑
i∈I

qi −
∑
i∈I

pi

As the pi form a probability distribution,∑i∈I pi = 1 and∑i∈I qi ≤ 1, so the right
hand side is at most 0. Therefore,

−
n∑

i=1
pi ln pi = −

∑
i∈I

pi ln pi ≤ −
∑
i∈I

pi ln qi = −
n∑

i=1
pi ln qi

If equality holds, we must have ∑i∈I qi = 1 and qi
pi

= 1 for all i ∈ I , giving that
pi = qi for all i.

Corollary 1.2
H(p1, . . . , pn) ≤ logn, with equality iff p1 = · · · = pn.

§1.6 Optimal codes

Let A = {µ1, . . . , µm} be an alphabet of m ≥ 2 messages, and let B be an alphabet of
length a ≥ 2. Let X be a r.v. taking values in Awith probabilities p1, . . . , pm.

Definition 1.5 (Optimal Code)
A code c : A → B⋆ is called optimal if it has the smallest possible expected word
length∑ piℓi = E [S] among all decipherable codes.

Theorem 1.3 (Shannon’s Noiseless Coding Theorem)
The expected word length E [S] of a decipherable code satisfies

for decipherable codes︷ ︸︸ ︷
H(X)
log a

≤ E[S] < H(X)
log a

+ 1︸ ︷︷ ︸
for optimal codes

9

Moreover, the left hand inequality is an equality iff pi = a−ℓi with ∑ a−ℓi = 1 for
some integers ℓ1, . . . , ℓm.

Proof. First, we consider the lower bound. Let c : A → B⋆ be a decipherable code
with word lengths ℓ1, . . . , ℓm. Let qi = a−ℓi

D where D =
∑
a−ℓi , so ∑ qi = 1. By

Gibbs’ inequality,

H(X) ≤ −
∑

pi log qi = −
∑

pi(−ℓi log a− logD) = logD + log a
∑

piℓi

By McMillan’s inequality, D ≤ 1 so logD ≤ 0. Hence, H(X) ≤ log a
∑
piℓi =

log aE [S] as required. Equality holds exactly whenD = 1 and pi = qi = a−ℓi

D = a−ℓi

for some integers ℓ1, . . . , ℓm.

Now, consider the upper bound. We construct a code called the Shannon–Fano
code. Let ℓi = d− loga pie, so − loga pi ≤ ℓi < − loga pi + 1. Therefore, loga pi ≥ −ℓi,
so pi ≥ a−ℓi . Thus, Kraft’s inequality∑ a−ℓi ≤ 1 is satisfied, so there exists a prefix-
free code cwith these word lengths ℓ1, . . . , ℓm. c has expected word length

E [S] =
∑

piℓi <
∑

pi(− loga pi + 1) = H(X)
log a

+ 1

as required.

Example 1.6 (Shannon–Fano coding)
For probabilities p1, . . . , pm, we set ℓi = d− loga pie. Construct a prefix-free code
with these word lengths by choosing codewords in order of size, with smallest code-
words being selected first to ensure that the prefix-free property holds. By Kraft’s
inequality, this process can always be completed.

Example 1.7
Let a = 2,m = 5, and define

i pi d− log2 pie
1 0.4 2 00
2 0.2 3 010
3 0.2 3 011
4 0.1 4 1000
5 0.1 4 1001

Here, E [S] =
∑
piℓi = 2.8, and H(X) = H(X)

log 2 ≈ 2.12. Clearly, this is not optimal;
one could take c(4) = 100, c(5) = 101 to reduce the expected word length.

10

§1.7 Huffman coding

Let A = {µ1, . . . , µm} and pi = P (X = µi). We assume a = 2 and B = {0, 1} for
simplicity. WLOG, we can assume p1 ≥ p2 ≥ · · · ≥ pm. We construct an optimal code
inductively.

Ifm = 2, we take codewords 0 and 1. Ifm > 2, first we take the Huffman code for mes-
sages µ1, . . . , µm−2, ν with probabilities p1, p2, . . . , pm−2, pm−1 + pm. Then, we append 0
and 1 to the codeword for ν to obtain the new codewords for µm−1, µm.

Remark 2. By construction, Huffman codes are prefix-free. In general, Huffman codes
are not unique; we require a choice if pi = pj .

Example 1.8
Consider the example Let a = 2,m = 5, and consider as before

i pi

1 0.4
2 0.2
3 0.2
4 0.1
5 0.1

Merging 4 and 5, as they have the lowest probabilities,

i pi

1 0.4
2 0.2
3 0.2
45 0.2

Continuing, we obtain

i pi

(3(45))2 0.6
1 0.4

11

giving codewords

•

• 1

• 2

3 •

4 5

0 1

0 1

0 1

0 1

This gives E [S] = 2.2, better than the Shannon–Fano code found above.

Lemma 1.1
Let µ1, . . . , µm be messages in A with probabilities p1, . . . , pm. Let c be an optimal
prefix-free code for cwith word lengths ℓ1, . . . , ℓm. Then,

1. if pi > pj , ℓi ≤ ℓj ; and

2. among all codewords of maximal length, there exist two which differ only in
the last digit.

Proof. If this were not true, one could modify c by

1. swapping the ith and jth codewords; or

2. deleting the last letter of each codeword of maximal length

which yields a prefix-free code with strictly smaller expected word length.

Theorem 1.4 (Huffman 1952)
Huffman codes are optimal.

Proof. The proof is by induction on m. If m = 2, then the codewords are 0 and 1,
which is clearly optimal.

Assume m > 2, and let cm be the Huffman code for Xm which takes values
µ1, . . . , µm with probabilities p1 ≥ · · · ≥ pm. cm is constructed from a Huff-
man code cm−1 with r.v. Xm−1 taking values µ1, . . . , µn−2, ν with probabilities

12

p1, . . . , pm−2, pm−1 + pm. The code cm−1 is optimal by the inductive hypothesis.
The expected word length E [Sm] is given by

E [Sm] = E [Sm−1] + pm−1 + pm

Let c′
m be an optimal code for Xm, which wlog can be chosen to be prefix-free.

WLOG, the last two codewords of c′
m can be chosen to have the largest pos-

sible length and differ only in the final position, by the previous lemma. Then,
c′

m(µm−1) = y0 and c′
m(µm) = y1 for some y ∈ {0, 1}⋆. Let c′

m−1 be the prefix-free
code for Xm−1 given by

c′
m−1(µi) =

{
c′

m(µi) i ≤ m− 2
y i = m− 1,m

The expected word length satisfies

E
[
S′

m

]
= E

[
S′

m−1
]

+ pm−1 + pm

By the inductive hypothesis, cm−1 is optimal, so E [Sm−1] ≤ E
[
S′

m−1
]
. Combining

the equations,

E [Sm] ≤ E
[
S′

m

]
So cm is optimal as required.

Remark 3. Not all optimal codes are Huffman codes. However, we have proven that,
given a prefix-free optimal code with prescribed word lengths, there is a Huffman code
with these word lengths.

§1.8 Joint entropy

LetX,Y be r.v.s with values inA,B. Then, the pair (X,Y) is also a r.v., taking values in
A× B. This has entropyH(X,Y), called the joint entropy for X and Y .

H(X,Y) = −
∑
x∈A

∑
y∈B

P (X = x, Y = y) logP (X = x, Y = y)

This construction generalises to finite tuples of r.v.s.

Lemma 1.2
LetX,Y be r.v.s taking values inA,B. ThenH(X,Y) ≤ H(X)+H(Y), with equality
iff X and Y are independent.

13

Proof. Let A = {x1, . . . , xm} and B = {y1, . . . , yn}. Let pij = P (X = xi, Y = yj),
pi = P (X = xi), and qj = P (Y = yj). By Gibbs’ inequality applied to {pij} and
{piqj},

H(X,Y) = −
∑

pij log pij ≤ −
∑

pij log(piqj)

= −
∑

i

∑
j

pij

 log pi −
∑

j

(∑
i

pij

)
log qj

= −
∑

i

pi log pi −
∑

j

qj log qj

= H(X) +H(Y)

Equality holds iff pij = piqj for all i, j, or equivalently, ifX,Y are independent.

14

§2 Noisy channels

§2.1 Decoding rules

Definition 2.1 (Binary [n,m]-code)
A binary [n,m]-code is a subset C of {0, 1}n of sizem = |C|. We say n is the length
of the code, and elements of C are called codewords.

We use an [n,m]-code to send one of m messages through a channel using n bits. For
instance, if the channel is a binary symmetric channel, we use the channel n times. Note
that 1 ≤ m ≤ 2n, so the information rate ρ(C) = 1

n logm satisfies 0 ≤ ρ(C) ≤ 1. Ifm = 1,
ρ(C) = 0, and if C = {0, 1}n, ρ(C) = 1.

Definition 2.2 (Hamming Distance)
Let x, y ∈ {0, 1}n. The Hamming distance between x and y is

d(x, y) = |{i : xi 6= yi}|

In this section, we consider only the binary symmetric channel with probability p.

Definition 2.3 (Decoding Rules)
Let C be a binary [n,m]-code.

• The ideal observerdecoding rule decodes x ∈ {0, 1}n as the c ∈ Cmaximising
the probability that cwas sent given that xwas received;

• The maximum likelihood decoding rule decodes x ∈ {0, 1}n as the c ∈ C
maximising the probability that xwas received given that cwas sent;

• The minimum distance decoding rule decodes x ∈ {0, 1}n as the c ∈ C min-
imising the Hamming distance d(x, c).

Lemma 2.1
Let C be a binary [n,m]-code.

1. If all messages are equally likely, the ideal observer and maximum likelihood
decoding rules agree.

2. If p < 1
2 , then themaximum likelihood andminimumdistance decoding rules

agree.

Note that the hypothesis in part (1) is reasonable if we first encode a message using
noiseless coding. The hypothesis in part (2) is reasonable, since a channelwith p = 1

2 can

15

carry no information, and a channelwith p > 1
2 can be used as a channelwith probability

1 − p by inverting its outputs. Channels with p = 0 are called lossless channels, and
channels with p = 1

2 are called useless channels.

Proof. Part (1). By Bayes’ rule,

P (c sent | x received) = P (c sent, x received)
P (x received)

= P (c sent)
P (x received)

P (x received | c sent)

By hypothesis, P (c sent) is independent of c. Hence, for some fixed received
message x, maximising P (c sent | x received) is the same as maximising
P (x received | c sent).

Part (2). Let r = d(x, c). Then,

P (x received | c sent) = pr(1− p)n−r = (1− p)n
(

p

1− p

)r

As p < 1
2 ,

p
1−p < 1. Hence, maximising P (x received | c sent) is equivalent to min-

imising r = d(x, c).

We can therefore choose to use minimum distance decoding from this point.

Example 2.1
Suppose codewords 000, 111 are sent with probabilities α = 9

10 and 1 − α = 1
10 ,

through a binary symmetric channel with error probability p = 1
4 . Suppose that we

receive 110. Clearly, an error has been introduced.

P (000 sent | 110 received) = αp2(1− p)
αp2(1− p) + (1− α)p(1− p)2 = 3

4

P (111 sent | 110 received) = 1
4

The ideal observer therefore decodes 110 as 000. The maximum likelihood or min-
imum distance decoding rules decode 110 as 111.

Remark 4. Minimum distance decoding may be expensive in terms of time and storage
if |C| is large, since the distance to all codewords must be calculated a priori. One must
also specify a convention in case of a tie between the probabilities or distances, for in-
stance, using a random choice, or requesting a retransmission.

16

§2.2 Error detection and correction

The aim when constructing codes for noisy channels is to detect errors, and if possible,
to correct them.

Definition 2.4 (Error Correcting Code)
A binary [n,m]-code C is

• d-error detecting if, when changing up to d digits in each codeword, we can
never produce another codeword;

• e-error correcting if, knowing that x ∈ {0, 1}n differs from a codeword in at
most e positions, we can deduce the codeword.

Example 2.2 (Repetition Code)
A repetition code of length n has codewords 0n, 1n. This is an [n, 2]-code. It is
(n− 1)-error detecting, and

⌊
n−1

2

⌋
-error correcting. Its information rate is 1

n .

Example 2.3 (Simple Parity Check Code)
A simple parity check code or paper tape code of length n identifies the set {0, 1}
with the field F2 of two elements, and defines C = {(x1, . . . , xn) ∈ Fn

2 :
∑
xi = 0}.

This is an [n, 2n−1]-code. This is 1-error detecting and 0-error correcting, but has
information rate n−1

n .

Example 2.4 (Hamming Code)
Hamming’s original code is a 1-error correcting binary [7, 16]-code, defined on a
subset of F7

2 by

C =
{
c ∈ F7

2 : c1 + c3 + c5 + c7 = 0; c2 + c3 + c6 + c7 = 0; c4 + c5 + c6 + c7 = 0
}

The bits c3, c5, c6, c7 are chosen arbitrarily, and c1, c2, c4 are check digits, giving a
size of 24 = 16. Suppose that we receive x ∈ F7

2. We form the syndrome z = zx =
(z1, z2, z4) ∈ F3

2 where

z1 = x1 + x3 + x5 + x7; z2 = x2 + x3 + x6 + x7; z4 = x4 + x5 + x6 + x7

By definition of C, if x ∈ C then z = (0, 0, 0). If d(x, c) = 1 for some c ∈ C, then
the place where x and c differ is given by z1 + 2z2 + 4z4 (not modulo 2). Indeed, if
x = c + ei where ei is the zero vector with a one in the ith position, zx = zei

a, and

17

one can check that this holds for each 1 ≤ i ≤ 7. Therefore, Hamming’s original
code is 1-error correcting.
aE.g. ze3 = (1, 1, 0), the binary expansion of 3

Lemma 2.2
The Hamming distance is a metric on Fn

2 .

Proof. Clearly, d(x, y) ≥ 0 and equality holds iff x = y, and d(x, y) = d(y, x). Let
x, y, z ∈ Fn

2 . Then,

{i : xi 6= zi} ⊆ {i : xi 6= yi} ∪ {i : yi 6= zi}

Hence d(x, z) ≤ d(x, y) + d(y, z).

Remark 5. We could write d(x, y) as∑ d1(xi, yi) where d1 is the discrete metric on F2.

§2.3 Minimum Distance

Definition 2.5 (Minimum Distance)
The minimum distance of a code is the minimum value of d(c1, c2) for codewords
c1 6= c2.

Lemma 2.3
Let C be a code with minimum distance d > 0. Then,

1. C is (d− 1)-error detecting, but cannot detect all sets of d errors;

2. C is
⌊

d−1
2

⌋
-error correcting, but cannot correct all sets of

⌊
d−1

2

⌋
+ 1 errors.

Proof. Part (1). If x ∈ Fn
2 and c is a codeword with 1 ≤ d(x, c) ≤ d− 1. Then x 6∈ C,

so d− 1 errors are detected. Suppose c1, c2 are codewords with d(c1, c2) = d. Then
c1 can be corrupted into c2 with only d errors, and this is undetectable.

Part (2). Let e =
⌊

d−1
2

⌋
. By definition, e ≤ d−1

2 < e + 1, so 2e < d ≤ 2(e + 1). Let
x ∈ Fn

2 . If c1 ∈ C with d(x, c1) ≤ e, we want to show that d(x, c2) > e for all c2 6= c1.
By the triangle inequality, d(x, c2) ≥ d(c1, c2) − d(x, c1) ≥ d − e > e as required.
Hence, C is e-error correcting.

Let c1, c2 ∈ C with d(c1, c2) = d. Let x ∈ Fn
2 differ from c1 in precisely e + 1 places

18

that c1 and c2 differ. Then d(x, c1) = e+ 1, and d(x, c2) = d− (e+ 1) ≤ e+ 1. Hence,
C cannot correct all sets of e+ 1 errors.

Definition 2.6 ([n,m, d]-code)
An [n,m]-code with minimum distance d is called an [n,m, d]-code.

Note thatm ≤ 2n with equality iff C = Fn
2 . Similarly, d ≤ n, with equality in the case of

the repetition code.

Example 2.5
The repetition code of length n is an [n, 2, n]-code. The simple parity check code
of length n is an [n, 2n−1, 2]-code. The trivial code on n bits is an [n, 2n, 1]-code.
Hamming’s original code is 1-error correcting, so has minimum distance at least 3.
The minimum distance can easily be shown to be exactly 3 as 0000000, 1110000 are
codewords, so it is a [7, 16, 3]-code.

§2.4 Covering Estimates

Definition 2.7 (Closed Haming Ball)
Let x ∈ Fn

2 and r ≥ 0. Then, we denote the closed Hamming ballwith centre x and
radius r by B(x, r). We write V (n, r) = |B(x, r)| =

∑r
i=0

(n
i

)
for the volume of this

ball.

Lemma 2.4 (Hamming’s Bound; Sphere Packing Bound)
An e-error correcting code C of length n has

|C| ≤ 2n

V (n, e)

Proof. C is e-error correcting, soB(c1, e)∩B(c2, e) is empty for all codewords c1 6= c2.
Hence, ∑

c∈C

|B(c, e)| ≤ |Fn
2 | =⇒ |C|V (n, e) ≤ 2n

as required.

Definition 2.8 (Perfect Code)

19

An e-error correcting code C of length n s.t. |C| = 2n

V (n,e) is called perfect.

Remark 6. Equivalently, a code is perfect if for all x ∈ Fn
2 , ∃! c ∈ C s.t. d(x, c) ≤ e.

Alternatively, Fn
2 is a union of disjoint balls B(c, e) for all c ∈ C, or that any e+ 1 errors

will cause the message to be decoded incorrectly.

Example 2.6
Consider Hamming’s [7, 16, 3]-code. This is 1-error correcting, and

2n

V (n, e)
= 27

V (7, 1)
= 27

1 + 7
= 24 = |C|

So Hamming’s original code is perfect.

Example 2.7
The binary repetition code of length n is perfect iff n is odd.

Remark 7. If 2n

V (n,e) is not an integer, there does not exist a perfect e-error correcting code
of length n. The converse is false; the case n = 90, e = 2 is discussed on the second
example sheet.

Definition 2.9 (A(n, d))
A(n, d) is the largest possible sizem of an [n,m, d]-code.

The values of the A(n, d) are unknown in general.

Example 2.8
A(n, 1) = 2n, considering the trivial code. A(n, 2) = 2n−1, maximised at the simple
parity check code. A(n, n) = 2, maximised at the repetition code.

Lemma 2.5
A(n, d+ 1) ≤ A(n, d).

Proof. Let m = A(n, d + 1), and let C be an [n,m, d + 1]-code. Let c1, c2 ∈ C be
distinct codewords s.t. d(c1, c2) = d + 1. Let c′

1 differ from c1 in exactly one of the
places where c1 and c2 differ. Then d(c′

1, c2) = d. If c ∈ C is any codeword not equal
to c1, then d(c, c1) ≤ d(c, c′

1) + d(c′
1, c1) hence d+ 1 ≤ d(c, c′

1) + 1, so the code given

20

by C ∪ {c′
1} \ {c1} has minimum distance d, but has length n and size m. This is

therefore an [n,m, d]-code as required.

Corollary 2.1
Equivalently, A(n, d) = max {m : ∃[n,m, d′]-code, for some d′ ≥ d}.

Theorem 2.1
2n

V (n, d− 1)
≤ A(n, d) ≤ 2n

V
(
n,
⌊

d−1
2

⌋)
The upper bound is Hamming’s bound; the lower bound is known as the GSV (Gilbert–
Shannon–Varshamov) bound. The upper bound can be thought of as a sphere packing
bound, and the lower bound is a sphere covering bound.

Proof. We prove the lower bound. Let m = A(n, d), and let C be an [n,m, d]-code.
Then, there exists no x ∈ Fn

2 with d(x, c) ≥ d for all codewords. Indeed, if such an
x exists, we could consider the code C ∪ {x}, which would be an [n,m+ 1, d]-code,
contradicting maximality ofm. Then,

Fn
2 ⊆

⋃
c∈C

B(c, d− 1) =⇒ 2n ≤
∑
c∈C

|B(c, d− 1)| = mV (n, d− 1)

as required.

Example 2.9
Let n = 10, d = 3. Then V (n, 1) = 11 and V (n, 2) = 56, so the GSV bound is
210

56 ≤ A(10, 3) ≤ 210

11 . Hence, 19 ≤ A(10, 3) ≤ 93. It was known that the lower
bound could be improved to 72. We now know that the true value of A(10, 3) is
exactly 72. In this case, the GSV bound was not a sharp inequality.

§2.5 Asymptotics

We study the information rate log A(n,bnδc)
n as n → ∞ to see how large the information

rate can be for a fixed error rate.

Proposition 2.1
Let 0 < δ < 1

2 . Then,

21

1. log V (n, bnδc) ≤ nH(δ);

2. 1
n logA(n, bnδc) ≥ 1−H(δ);

where H(δ) = −δ log δ − (1− δ) log(1− δ).

Proof. (1) implies (2). By the GSV bound, we find

A(n, bnδc) ≥ 2n

V (n, bnδc − 1)
≥ 2n

V (n, bnδc)

Taking logarithms and dividing by n,

1
n

logA(n, bnδc) ≥ 1− log V (n, bnδc)
n

≥ 1−H(δ)

Part (1). H(δ) is increasing for δ < 1
2 . Therefore, wlog, we may assume nδ is an

integer. Now, as δ
1−δ < 1,

1 = (δ + (1− δ))n

=
n∑

i=0

(
n

i

)
δi(1− δ)n−i

≥
nδ∑

i=0

(
n

i

)
δi(1− δ)n−i

= (1− δ)n
nδ∑

i=0

(
n

i

)(
δ

1− δ

)i

≥ (1− δ)n
nδ∑

i=0

(
n

i

)(
δ

1− δ

)nδ

= δnδ(1− δ)n(1−δ)V (n, nδ)

Taking logarithms,

0 ≥ nδ log δ + n(1− δ) log(1− δ) + log V (n, nδ)

as required.

The constantH(δ) in the proposition is optimal.

Lemma 2.6
limn→∞

log V (n,bnδc)
n = H(δ).

22

Proof. Wlog assume 0 < δ < 1
2 . Let 0 ≤ r ≤ n

2 . Recall V (n, r) =
∑r

i=0
(n

i

)
. Then(

n

r

)
≤ V (n, r) ≤ (r + 1)

(
n

r

)
(∗)

Recall Stirling’s formula: lnn! = n lnn− n+O(logn).

ln
(
n

r

)
= (n lnn− n)− (r ln r − r)

− ((n− r) ln(n− r)− (n− r)) +O(logn)

log
(
n

r

)
= −r log r

n
− (n− r) log n− r

n
+O(logn)

= nH

(
r

n

)
+O(logn).

By (∗)

H

(
r

n

)
+O

(logn
n

)
≤ log V (n, r)

n
≤ H

(
r

n

)
+O

(logn
n

)
lim

n→∞
log V (nbnδc)

n
= H(δ)

§2.6 Constructing new codes from old

Let C be an [n,m, d]-code.

Example 2.10 (Parity Check Extension)
The parity check extension is an [n+ 1,m, d′]-code given by

C+ =
{(

c1, . . . , cn,
n∑

i=1
ci mod 2

)
: (c1, . . . , cn) ∈ C

}

where d′ is either d or d+ 1, depending on whether d is odd or even.

Example 2.11 (Punctured Code)
Let 1 ≤ i ≤ n. Then, deleting the ith digit from each codeword gives the punctured

23

code

C− = {(c1, . . . , ci−1, ci+1, . . . , cn) : (c1, . . . , cn) ∈ C}

If d ≥ 2, this is an [n− 1,m, d′]-code where d′ is either d or d− 1.

Example 2.12 (Shortened Code)
Fix 1 ≤ i ≤ n and α ∈ F2. The shortened code is

C ′ = {(c1, . . . , ci−1, ci+1, . . . , cn) : (c1, . . . , ci−1, α, ci+1, . . . , cn) ∈ C}

This is an [n− 1,m′, d′] with d′ ≥ d andm′ ≥ m
2 for a suitable choice of α.

Note that puncturing and shortenings are not the same thing.

24

§3 Information theory

§3.1 Sources and information rate

Definition 3.1 (Source)
A source is a sequence of r.v.s X1, X2, . . . taking values in the alphabet A.

Example 3.1 (Bernoulli Source)
The Bernoulli (or memoryless) source is a source where the Xi are iid Bernoulli’s.

Definition 3.2 (Reliably Encodable)
A source X1, X2, . . . is reliably encodable at rate r if ∃ subsets An ⊆ An s.t.

1. limn→∞
log |An|

n = r;

2. limn→∞ P ((X1, . . . , Xn) ∈ An) = 1.

Definition 3.3 (Information Rate)
The information rate H of a source is the infimum of all reliable encoding rates.

Example 3.2
0 ≤ H ≤ log |A|, with both bounds attainable. The proof is left as an exercise.

Shannon’s first coding theorem computes the information rate of certain sources, includ-
ing Bernoulli sources.

Recall from IA Probability that a probability space is a tuple (Ω,F ,P), and a discrete r.v.
is a function X : Ω → A. The probability mass function is the function pX : A → [0, 1]
given by pX(x) = P (X = x). We can consider the function p(X) : Ω→ [0, 1] defined by
the composition pX ◦X , which assigns p(X)(ω) = P (X = X(ω)); hence, p(X) is also a
r.v..

Similarly, given a sourceX1, X2, . . . of r.v.s with values in A, the probability mass func-
tion of any tuple X(n) = (X1, . . . , Xn) is pX(n)(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn).
As pX(n) : An → [0, 1], and X(n) : Ω → An, we can consider p(X(n)) = pX(n) ◦ X(n)

defined by ω 7→ pX(n)(X(n)(ω)).

Example 3.3

25

Let A = {A,B,C}. Suppose

X(2) =



AB with probability 0.3
AC with probability 0.1
BC with probability 0.1
BA with probability 0.2
CA with probability 0.25
CB with probability 0.05

Then, pX(2)(AB) = 0.3, and so on. Hence,

p(X(2)) =



0.3 with probability 0.3
0.1 with probability 0.2
0.2 with probability 0.2
0.25 with probability 0.25
0.05 with probability 0.05

We say that a source X1, X2, . . . converges in probability to a r.v. L if ∀ ε > 0,
limn→∞ P (|Xn − L| > ε) = 0. We write Xn

P−→ L. The weak law of large numbers states
that if X1, X2, . . . are iid real-valued r.v.s with finite E [X1], then 1

n

∑n
i=1Xi

P−→ E [X].

Example 3.4 (Bernoulli)
Let X1, X2, . . . be a Bernoulli source. Then p(X1), p(X2), . . . are iid r.v.s, and
p(X1, . . . , Xn) = p(X1) . . . p(Xn). Note that by the WLLN,

− 1
n

log p(X1, . . . , Xn) = − 1
n

n∑
i=1

log p(Xi)
P−→ E [− log p(X1)] = H(X1)

Lemma 3.1
The information rate of a Bernoulli source X1, X2, . . . is at most the expected word
length of an optimal code c : A → {0, 1}⋆ for X1.

Proof. Let ℓ1, ℓ2, . . . be the codeword lengths when we encode X1, X2, . . . using c.
Let ε > 0. Let

An = {x ∈ An : c⋆(x) has length less than n(E [ℓ1] + ε)}

26

Then,

P ((X1, . . . , Xn) ∈ An) = P
(

n∑
i=1

ℓi ≤ n(E [ℓ1] + ε)
)

= P
(∣∣∣∣∣ 1n

n∑
i=1

ℓi − E [ℓi]
∣∣∣∣∣ < ε

)
→ 1

Now, c is decipherable so c⋆ is injective. Hence, |An| ≤ 2n(E[ℓ1]+ε). Making An

larger if necessary, we can assume |An| =
⌊
2n(E[ℓ1]+ε)

⌋
. Taking logarithms, log |An|

n →
E [ℓ1]+ε. SoX1, X2, . . . is reliably encodable at rate r = E [ℓ1]+ε for all ε > 0. Hence
the information rate is at most E [ℓ1].

Corollary 3.1
A Bernoulli source has information rate less than H(X1) + 1.

Proof. Combine the previous lemma with the noiseless coding theorem.

Suppose we encode X1, X2, . . . in blocks of size N . Let Y1 = (X1, . . . , XN), Y2 =
(XN+1, . . . , X2N) and so on, s.t. Y1, Y2, . . . take values in AN . One can show that if the
sourceX1, X2, . . . has information rateH , then Y1, Y2, . . . has information rateNH .

Proposition 3.1
The information rateH of a Bernoulli source is at mostH(X1).

Proof. Apply the previous corollary to the Yi to obtain

NH < H(Y1) + 1 = H(X1, . . . , XN) + 1 = NH(X1) + 1 =⇒ H < H(X1) + 1
N
.

But N > 1 is arbitrary so can take limit.

§3.2 Asymptotic equipartition property

Definition 3.4 (Asymptotic Equipartition Property (AEP))
A sourceX1, X2, . . . satisfies the asymptotic equipartition property if ∃ a constant
H ≥ 0 s.t.

− 1
n

log p(X1, . . . , Xn) P−→ H

Example 3.5

27

Supposewe toss a biased coinwith probability p of obtaining a head. LetX1, X2, . . .
be the results of independent coin tosses. If we toss the coinN times, we expect pN
heads and (1 − p)N tails. The probability of any particular sequence of pN heads
and (1− p)N tails is

ppN (1− p)(1−p)N = 2N(p log p+(1−p) log(1−p)) = 2−NH(X)

Not every sequence of tosses is of this form, but there is only a small probability
of ‘atypical sequences’. With high probability, it is a ‘typical sequence’ which has a
probability close to 2−NH(X).

Lemma 3.2
The AEP for a sourceX1, X2, . . . is equivalent to the property that ∀ ε > 0 ∃ n0 ∈ N
s.t. ∀ n ≥ n0, ∃ ‘typical set’ Tn ⊆ An s.t.

1. P ((X1, . . . , Xn) ∈ Tn) > 1− ε;

2. 2−n(H+ε) ≤ p(x1, . . . , xn) ≤ 2−n(H−ε) ∀ (x1, . . . , xn) ∈ Tn.

Proof sketch (Not Lectured). First, we show that the AEP implies the alternative
definition. We define

Tn =
{

(x1, . . . , xn)
∣∣∣∣ ∣∣∣∣− 1

n
log p(x1, . . . , xn)−H

∣∣∣∣ ≤ ε}
= {(x1, . . . , xn) | condition (2) holds}

For the converse,

P
(∣∣∣∣ 1n log p(x1, . . . , xn)−H

∣∣∣∣ < ε

)
≥ P (Tn)→ 1

§3.3 Shannon’s first coding theorem

Theorem 3.1 (Shannon’s First Coding Theorem)
Let X1, X2, . . . be a source satisfying AEP with constant H . Then this source has
information rateH .

Proof (Non Examinable). Note the first part of this proof is incorrect.

Let ε > 0, and let Tn ⊆ An be typical sets. Then, ∀ n ≥ n0(ε), ∀ (x1, . . . , xn) ∈ Tn

we have p(x1, . . . , xn) ≥ 2−n(H+ε). Therefore, 1 ≥ P (Tn) ≥ |Tn|2−n(H+ε), giving

28

1
n log |Tn| ≤ H + ε. Taking An = Tn in the defn of reliable encoding shows that the
source is reliably encodable at rateH + ε.

If H = 0 the proof concludes, so we may assume H > 0. Let 0 < ε < H
2 , and

suppose that the source is reliably encodable at rateH − 2εwith sets An ⊆ An. Let
Tn ⊆ An be typical sets. Then, ∀ (x1, . . . , xn) ∈ Tn, p(x1, . . . , xn) ≤ 2−n(H−ε), so
P (An ∩ Tn) ≤ 2−n(H−ε)|An|, giving

1
n

logP (An ∩ Tn) ≤ −(H − ε) + 1
n

log |An| → −(H − ε) + (H − 2ε) = −ε

Then, logP (An ∩ Tn) → −∞ as n → ∞, so P (An ∩ Tn) → 0. But P (Tn) → 1
and P (An) → 1 as n → ∞ Ea. So we cannot reliably encode at rate H − 2ε, so the
information rate is at leastH .
aP (Tn) ≤ P (An ∩ Tn) + P (An \ An) → 0 + 0 as n → ∞, contradicting typicality.

Corollary 3.2
A Bernoulli source X1, X2, . . . has information rateH(X1).

Proof. In example 3.4 we showed that for a Bernoulli source,
− 1

n log p(X1, . . . , Xn) P−→ H(X1). So the AEP holds with H = H(X1), giving the
result by Shannon’s first coding theorem.

Remark 8. The AEP is useful for noiseless coding. We can encode the typical sequences
using a block code, and encode the atypical sequences arbitrarily.

Many sources, which are not necessarily Bernoulli, also satisfy AEP. Under suitable hy-
potheses, the sequence 1

nH(X1, . . . , Xn) is decreasing and bounded below, and the AEP
is satisfied with constantH = limn→∞

1
nH(X1, . . . , Xn).

For a Bernoulli source, H(X1, . . . , Xn) = nH(X1).

§3.4 Capacity

Consider a communication channel with input alphabet A and output alphabet B. Re-
call the following definitions. A code of length n is a subset C ⊆ An. The error rate
is

ê(C) = max
c∈C

P (error | c sent)

The information rate is ρ(C) = log |C|
n . A channel can transmit reliably at rate R if ∃

codesC1, C2, . . . whereCn has length n s.t. limn→∞ ρ(Cn) = R and limn→∞ ê(Cn) = 0.

29

Definition 3.5 ((Operational) Capacity)
The (operational) capacity of a channel is the supremum of all rates at which it can
transmit reliably.

Supposewe are given a sourcewith information rate r bits per second that emits symbols
at a rate of s symbols per second. Suppose we also have a channel with capacity R
bits per transmission that transmits symbols at a rate of S transmissions per second.
Usually, information theorists take S = s = 1. We will show that reliable encoding and
transmission is possible iff rs ≤ RS.

We will now compute the capacity of the binary symmetric channel with error probab-
ility p.

Proposition 3.2
A binary symmetric channel with error probability p < 1

4 has nonzero capacity.

Proof. Let δ be s.t. 2p < δ < 1
2 . We claim that we can reliably transmit at rate

R = 1 − H(δ) > 0. Let Cn be a code of length n, and suppose it has minimum
distance bnδc and it’s of maximal size. Then, by proposition 2.1,

|Cn| = A(n, bnδc) ≥ 2n(1−H(δ)) = 2nR

Replacing Cn with a subcode if necessary, we can assume |Cn| =
⌊
2nR

⌋
, with min-

imum distance at least bnδc. Using minimum distance decoding,

ê(Cn) ≤ P
(
in n uses, the channel makes at least

⌊bnδc − 1
2

⌋
errors

)
≤ P

(
in n uses, the channel makes at least

⌊
nδ − 1

2

⌋
errors

)

Let ε > 0 be s.t. p+ε < δ
2 . Then, forn sufficiently large, nδ−1

2 = n
(

δ
2 −

1
2n

)
> n(p+ε).

Hence, ê(Cn) ≤ P (in n uses, the channel makes at least n(p+ ε) errors). We show
that this value converges to zero as n→∞ using the next lemma.

Lemma 3.3
Let ε > 0. A binary symmetric channel with error probability p is used to transmit
n digits. Then,

lim
n→∞

P (in n uses, the channel makes at least n(p+ ε) errors) = 0

30

Proof. Consider r.v.s Ui = 1the ith digit is mistransmitted. The Ui are iid with P (Ui = 1) =
p. In particular, E [Ui] = p. Therefore, the probability that the channel makes at
least n(p+ ε) errors is

P
(

n∑
i=1

Ui ≥ n(p+ ε)
)
≤ P

(∣∣∣∣∣ 1n
n∑

i=1
Ui − p

∣∣∣∣∣ ≥ ε
)

so the result holds by the weak law of large numbers.

Remark 9. ∑Ui ∼ Bin(n, p).

§3.5 Conditional entropy

Definition 3.6 (Conditional Entropy)
LetX,Y be r.v.s taking values in alphabetsA,B respectively. Then, the conditional
entropy is defined by

H(X | Y = y) = −
∑
x∈A

P (X = x | Y = y) logP (X = x | Y = y)

and

H(X | Y) =
∑
y∈B

P (Y = y)H(X | Y = y)

Note that H(X | Y) ≥ 0. (Also called the equivocation of Y about X).

Lemma 3.4
H(X,Y) = H(X | Y) +H(Y).

Proof.

H(X | Y) = −
∑
y∈B

∑
x∈A

P (X = x | Y = y)P (Y = y) log (P (X = x | Y = y))

= −
∑
y∈B

∑
x∈A

P (X = x | Y = y)P (Y = y) log
(P (X = x, Y = y)

P (Y = y)

)
= −

∑
y∈B

∑
x∈A

P (X = x, Y = y) (logP (X = x, Y = y)− logP (Y = y))

= −
∑
y∈B

∑
x∈A

P (X = x, Y = y) logP (X = x, Y = y)

31

+
∑
y∈B

∑
x∈A

P (X = x, Y = y) logP (Y = y)

= −
∑
y∈B

∑
x∈A

P (X = x, Y = y) logP (X = x, Y = y)

+
∑
y∈B

P (Y = y) logP (Y = y)

= H(X,Y)−H(Y)

Example 3.6
LetX be a uniform r.v. on {1, . . . , 6}modelling a dice roll, andY is defined to be zero
ifX is even, and one ifX is odd. Then,H(X,Y) = H(X) = log 6 andH(Y) = log 2.
Therefore, H(X | Y) = log 3 and H(Y | X) = 0.

Corollary 3.3
H(X | Y) ≤ H(X), with equality iff X and Y are independent.

Proof. Combine the previous result with the fact that H(X,Y) ≤ H(X) + H(Y)
where equality holds iff H(X),H(Y) are independent.

Now, replace r.v.s X and Y with random vectors X(r) = (X1, . . . , Xr) and Y (s) =
(Y1, . . . , Ys). Similarly, we can define H(X1, . . . , Xr | Y1, . . . , Ys) = H(X(r) | Y (s)). Note
that H(X,Y | Z) is the entropy of X and Y combined, given the value of Z, and is not
the entropy of X , together with Y given Z.

Lemma 3.5
Let X,Y, Z be r.v.s. Then, H(X | Y) ≤ H(X | Y, Z) +H(Z).

Proof. Expand H(X,Y, Z) in two ways.

H(Z | X,Y) +H(X | Y) +H(Y)︸ ︷︷ ︸
H(X,Y)

= H(X,Y, Z) = H(X | Y, Z) +H(Z | Y) +H(Y)︸ ︷︷ ︸
H(Y,Z)

Since H(Z | X,Y) ≥ 0, we have

H(X | Y) ≤ H(X | Y, Z) +H(Z | Y) ≤ H(X | Y, Z) +H(Z)

32

Proposition 3.3 (Fano’s Inequality)
Let X,Y be r.v.s taking values in A. Let |A| = m, and let p = P (X 6= Y). Then
H(X | Y) ≤ H(p) + p log(m− 1).

Proof. Define Z to be zero if X = Y and one if X 6= Y . Then, P (Z = 0) =
P (X = Y) = 1 − p, and P (Z = 1) = P (X 6= Y) = p. Hence, H(Z) = H(p).
Applying the previous lemma, H(X | Y) ≤ H(X | Y, Z) + H(p), so it suffices to
showH(X | Y, Z) ≤ p log(m− 1).

Since Z = 0 implies X = Y , H(X | Y = y, Z = 0) = 0. There arem − 1 remaining
possibilities for X . Hence, H(X | Y = y, Z = 1) ≤ log(m− 1).

H(X | Y, Z) =
∑
y∈A

∑
z∈{0,1}

P (Y = y, Z = z)H(X | Y = y, Z = z)

≤
∑
y∈A

P (Y = y, Z = 1) log(m− 1)

= P (Z = 1) log(m− 1)
= p log(m− 1)

as required.

LetX be a r.v. describing the input to a channel and Y be a r.v. describing the output of
the channel. H(p) provides the information required to decide whether an error has oc-
curred, and p log(m− 1) gives the information needed to resolve that error in the worst
possible case.

§3.6 Shannon’s second coding theorem

Definition 3.7 (Mutual Information)
LetX,Y be r.v.s taking values in A. The mutual information is I(X;Y) = H(X)−
H(X | Y).

This is nonnegative, as I(X;Y) = H(X) +H(Y)−H(X,Y) ≥ 0. Equality holds iffX,Y
are independent. Clearly, I(X;Y) = I(Y ;X).

Definition 3.8 (Information Capacity)
Consider a DMC with input alphabet A of sizem and output alphabet B. Let X be
a r.v. taking values in A, used as the input to this channel. Let Y be the r.v. output
by the channel, depending onX and the channel matrix. The information capacity
of the channel is maxX I(X;Y).

33

The maximum is taken over all discrete r.v.sX taking values in A, or equivalently. This
maximum is attained since I is continuous and the space{

(p1, . . . , pm) ∈ Rm : pi ≥ 0,
m∑

i=1
pi = 1

}

is compact. The information capacity depends only on the channel matrix.

Theorem 3.2 (Shannon’s Second Coding Theorem)
For a DMC, the (operational) capacity is equal to the information capacity.

Weprove that the operational capacity is atmost the information capacity in general, and
wewill prove the other inequality for the special case of the binary symmetric channel.

Example 3.7
Assuming this result holds, we compute the capacity of certain specific channels.

1. Consider the binary symmetric channel with error probability p, inputX , and
output Y . LetP (X = 0) = α,P (X = 1) = 1−α, soP (Y = 0) = (1−p)α+p(1−
α),P (Y = 1) = (1 − p)(1 − α) + pα. Then, as H(Y | X) = P (X = 0)H(p) +
P (X = 1)H(p),

C = max
α

I(X;Y) = max
α

[H(Y)−H(Y | X)]

= max
α

[H(α(1− p) + (1− α)p)−H(p)] = 1−H(p)

with the maximum attained at α = 1
2 . Hence, the capacity of the binary sym-

metric channel isC = 1+p log p+(1−p) log(1− p). If p = 0 or p = 1, C = 1. If
p = 1

2 , C = 0. Note that I(X;Y) = I(Y ;X); we can choose which to calculate
for convenience.

2. Consider the binary erasure channel with erasure probability p, in-
put X , and output Y . Let P (X = 0) = α,P (X = 1) = 1 − α, so
P (Y = 0) = (1 − p)α,P (Y = 1) = (1 − p)(1 − α),P (Y = ⋆) = p. We
obtain

H(X | Y = 0) = 0; H(X | Y = 1) = 0; H(X | Y = ⋆) = H(α)

Therefore, H(X | Y) = pH(α), giving

C = max
α

I(X;Y) = max
α

[H(X)−H(X | Y)]

34

= max
α

[H(α)− pH(α)] = (1− p) max
α

H(α) = 1− p

with maximum attained at α = 1
2 .

We will now model using a channel n times as the nth extension, replacing A with An

and B with Bn, and use the channel matrix defined by

P (y1 . . . yn received | x1 . . . xn sent) =
n∏

i=1
P (yi | xi)

Lemma 3.6
Consider a DMC with information capacity C. Then, its nth extension has informa-
tion capacity nC.

Proof. Let X1, . . . , Xn be the input producing an output Y1, . . . , Yn. Since the chan-
nel is memoryless,

H(Y1, . . . , Yn | X1, . . . , Xn) =
n∑

i=1
H(Yi | X1, . . . , Xn) =

n∑
i=1

H(Yi | Xi)

Therefore,

I(X1, . . . , Xn;Y1, . . . , Yn) = H(Y1, . . . , Yn)−H(Y1, . . . , Yn | X1, . . . , Xn)

= H(Y1, . . . , Yn)−
n∑

i=1
H(Yi | Xi)

≤
n∑

i=1
H(Yi)−

n∑
i=1

H(Yi | Xi)

=
n∑

i=1
[H(Yi)−H(Yi | Xi)]

=
n∑

i=1
I(Xi;Yi) ≤ nC

Equality is attained by taking X1, . . . , Xn iid s.t. I(Xi;Yi) = C. Indeed, if
X1, . . . , Xn are independent, then so are Y1, . . . , Yn, soH(Y1, . . . , Yn) =

∑n
i=1H(Yi).

Therefore,

max
X1,...,Xn

I(X1, . . . , Xn;Y1, . . . , Yn) = nC

as required.

We now prove part of Shannon’s second coding theorem.

35

Proposition 3.4
For a DMC, the (operational) capacity is at most the information capacity.

Proof. Let C be the information capacity. Suppose reliable transmission is possible
at a rate R > C, i.e. ∃ sequence of codes (Cn)n≥1 where Cn has length n and size⌊
2nR

⌋
, s.t. limn→∞ ρ(Cn) = R and limn→∞ ê(Cn) = 0.

Recall that ê(Cn) = maxc∈Cn P (error | c sent). Define the average error rate e(C)
by e(C) = 1

|Cn|
∑

c∈Cn
P (error | c sent). Note that e(Cn) ≤ ê(Cn). As ê(Cn)→ 0, we

also have e(Cn)→ 0.

Consider an input r.v. X distributed uniformly over Cn. Let Y be the output given
by X and the channel matrix. Then e(Cn) = P (X 6= Y) = p. Hence, H(X) =
log |Cn| = log

⌊
2nR

⌋
≥ nR − 1 for sufficiently large n. Also, by Fano’s inequality,

H(X | Y) ≤ H(p) + p log(|Cn| − 1) ≤ 1 + pnR since |Cn| ≤ b2nRc.

Recall that I(X;Y) = H(X) − H(X | Y). By the previous lemma, nC ≥ I(X;Y),
so

nC ≥ nR− 1− 1− pnR =⇒ pnR ≥ n(R− c)− 2 =⇒ p ≥ n(R− C)− 2
nR

As n → ∞, the right hand side converges to R−C
R > 0 as R > C. This contradicts

the fact that p = e(Cn) → 0. Hence, we cannot transmit reliably at any rate which
exceeds C, hence the capacity is at most C.

To complete the proof of Shannon’s second coding theorem for the binary symmetric
channel with error probability p, we prove that the operational capacity is at least 1 −
H(p).

Proposition 3.5
Consider a binary symmetric channel with error probability p, and letR < 1−H(p).
Then there exists a sequence of codes (Cn)n≥1 with Cn of length n and size

⌊
2nR

⌋
s.t. limn→∞ ρ(Cn) = R and limn→∞ e(Cn) = 0.

Remark 10. This proposition deals with the average error rate, instead of the error rate
ê.

Proof. We use the ‘method of random coding’. WLOG let p < 1
2 . Let ε > 0 s.t.

p + ε < 1
2 and R < 1 − H(p + ε) as H cts. We use minimum distance decoding,

and in the case of a tie, we make an arbitrary choice. Let m =
⌊
2nR

⌋
, and let C =

{c1, . . . , cm} be a code chosen uniformly at random from C = {[n,m]-codes}, a set

36

of size
(2n

m

)
.

Choose 1 ≤ i ≤ m uniformly at random, and send ci through the channel, and
obtain an output Y . Then, P (Y not decoded as ci) is the average value of e(C) for
C ranging over C, giving 1

|C|
∑

C∈C e(C). We can choose a code Cn ∈ C s.t. e(Cn) ≤
1

|C|
∑

C∈C e(C). So it suffices to show P (Y not decoded as ci)→ 0.

Let r = bn(p+ ε)c. Then if B(Y, r) ∩ C = {ci}, Y is correctly decoded as ci. There-
fore,

P (Y not decoded as ci) ≤ P (ci 6∈ B(Y, r)) + P (B(Y, r) ∩ C ⊋ {ci})

We consider the two cases separately.

In the first case with d(ci, Y) > r, P (d(ci, Y) > r) is the probability that the channel
makes more than r errors, and hence more than n(p + ε) errors. We have already
shown that this converges to zero as n→∞ in lemma 3.3.

In the second case with d(ci, Y) ≤ r, if j 6= i,

P (cj ∈ B(Y, r) | ci ∈ B(Y, r)) = V (n, r)− 1
2n − 1

≤ V (n, r)
2n

Therefore,

P (B(Y, r) ∩ C ⊋ {ci}) ≤
∑
j 6=i

P (cj ∈ B(Y, r), ci ∈ B(Y, r))

≤
∑
j 6=i

P (cj ∈ B(Y, r) | ci ∈ B(Y, r))

≤ (m− 1)V (n, r)
2n

≤ mV (n, r)
2n

≤ 2nR2nH(p+ε)2−n

= 2n(R−(1−H(p+ε))) → 0

as required.

Proposition 3.6
We can replace ewith ê in the previous result.

Proof. Let R′ be s.t. R < R′ < 1 − H(p). Then, apply the previous result to R′ to
construct a sequence of codes (C ′

n)n≥1 of length n and size
⌊
2nR′

⌋
, where e(C ′

n)→ 0.

37

Order the codewords of C ′
n by P(error | c sent) and delete the worst half. This gives

a code Cn with ê(Cn) ≤ 2e(C ′
n). Hence ê(Cn)→ 0 as n→∞.

Since Cn has length n, and size 1
2

⌊
2nR′

⌋
=
⌊
2nR′−1

⌋
. But 2nR′−1 = 2n(R′− 1

n
) ≥ 2nR

for sufficiently large n. So we can replace C ′
n with a code of smaller size

⌊
2nR

⌋
and

still have ê(Cn)→ 0 and ρ(Cn)→ R as n→∞.

Remark 11. 1. A BSC with error prob p has operational capacity 1−H(p), as we can
transmit reliably at any rate R < 1−H(p).

2. This result shows us that good codes exists, but the proof does not tell us how to
construct them

Example 3.8
Suppose capacity is 0.8. Let us have a message string of 0s and 1s. Take R = 0.75
(< 0.8). For n large, ∃ set of 20.75n codewords of length n that have error prob below
some prescribed threshold.
To encode message stream from the source, we:

• Break it into blocks of size 3dn
4 e = m sufficiently large (≥ 3

4n0(ε))

• encode thesem-blocks intoCn using codewords of length 4
3m for eachm-block

• transmit new message through channel.

You then get

• marked reduction in error prob but

• at the cost of complexity of encoding and slower rate of transmission.

§3.7 The Kelly criterion

Let 0 < p < 1, u > 0, 0 ≤ w < 1. Suppose that a coin is tossed n times in succession
with probability p of obtaining a head. If a stake of k is paid ahead of a particular throw,
the return is ku if the result is a head, and the return is zero if the result is a tail.

Suppose the initial bankroll is X0 = 1. After n throws, the bankroll is Xn. We bet wXn

on the (n+ 1)th coin toss, retaining (1− w)Xn. The bankroll after the toss is

Xn+1 =
{
Xn(wu+ (1− w)) (n+ 1)th toss is a head
Xn(1− w) (n+ 1)th toss is a tail

Define Yn+1 = Xn+1
Xn

, then the Yi are iid. Then log Yi is a sequence of iid r.v.s. Note that
logXn =

∑n
i=1 log Yi.

38

Lemma 3.7
Let µ = E [log Y1] , σ2 = Var log Y1. Then, if a > 0,

1. P
(∣∣∣ 1

n

∑n
i=1 log Yi − µ

∣∣∣ ≥ a) ≤ σ2

na2 by Chebyshev’s inequality;

2. P
(∣∣∣ log Xn

n − µ
∣∣∣ ≥ a) ≤ σ2

na2 ;

3. given ε > 0 and δ > 0, there existsN s.t. P
(∣∣∣ log Xn

n − µ
∣∣∣ ≥ δ) ≤ ε for all n ≥ N .

Consider a single coin toss, with probability p < 1 of a head. Suppose that a bet of k on
a head gives a payout of ku for some payout ratio u > 0. Suppose further that we have
an initial bankroll of 1, and we bet w on heads, retaining 1 − w, for some 0 ≤ w < 1.
Then, if Y is the expected fortune after the throw, E [log Y] = p log(1 + (u− 1)w) + (1−
p) log(1− w). One can show that the value of E [log Y] is maximised by taking w = 0 if
up ≤ 1, and setting w = up−1

u−1 if up > 1.

Let q = 1− p. If up > 1, at the optimum value of w, we find

E [log Y] = p log p+ q log q + log u− q log(u− 1) = −H(p) + log u− q log(u− 1)

Kelly’s criterion is that in order to maximise profit, E [log Y] should be optimised, given
that we can bet arbitrarily many times.

One can show that if w is set below the optimum, the bankroll will still increase, but
does so more slowly. If w is set sufficiently high, the bankroll will tend to decrease.

39

§4 Algebraic coding theory

§4.1 Linear codes

Definition 4.1 (Linear Code)
A binary code C ⊆ Fn

2 is linear if 0 ∈ C, and whenever x, y ∈ C, we have x+ y ∈ C.

Equivalently, C is a vector subspace of Fn
2 .

Definition 4.2 (Rank)
The rank of a linear code C, denoted rankC, is its dimension as an F2-vector space.
A linear code of length n and rank k is called an (n, k)-code. If it has minimum
distance d, it is called an (n, k, d)-code.

Let v1, . . . , vk be a basis for C. Then C =
{∑k

i=1 λivi : λi ∈ F2
}
. The size of the code is

therefore 2k, so an (n, k)-code is an [n, 2k]-code, and an (n, k, d)-code is an [n, 2k, d]-code.
The information rate is k

n .

Definition 4.3 (Weight)
The weight of x ∈ Fn

2 is w(x) = d(x, 0).

Lemma 4.1
The minimum distance of a linear code is the minimum weight of a nonzero code-
word.

Proof. Let x, y ∈ C. Then, d(x, y) = d(x + y, 0) = w(x + y). Observe that x 6= y iff
x+ y 6= 0, so d(C) is the minimum w(x+ y) for x+ y 6= 0.

Definition 4.4 (Inner Product)
Let x, y ∈ Fn

2 . Define x · y =
∑n

i=1 xiyi ∈ F2. This is symmetric and bilinear.

Warning 4.1
There are nonzero x s.t. x · x = 0.

Definition 4.5 (Parity Check Code)

40

Let P ⊆ Fn
2 . The parity check code defined by P is

C = {x ∈ Fn
2 : ∀p ∈ P, p · x = 0}

Example 4.1
1. P = {11 . . . 1} gives the simple parity check code.

2. P = {1010101, 0110011, 0001111} gives Hamming’s original [7, 16, 3]-code.

3. C+ and C− are linear if C is linear.

Lemma 4.2
Every parity check code is linear.

Proof. 0 ∈ C as p · 0 = 0. If p · x = 0 and p · y = 0 then p · (x + y) = 0, so x, y ∈ C
implies x+ y ∈ C.

Definition 4.6 (Dual Code)
Let C ⊆ Fn

2 be a linear code. The dual code C⊥ is defined by

C⊥ = {x ∈ Fn
2 : ∀y ∈ C, x · y = 0}

By definition, C⊥ is a parity check code, and hence is linear. Note that C ∩ C⊥ may
contain elements other than 0.

Lemma 4.3
rankC + rankC⊥ = n.

Proof. One can prove this by defining C⊥ as an annihilator from linear algebra. A
proof using coding theory is shown later.

Corollary 4.1
Let C be a linear code. Then (C⊥)⊥ = C. In particular, all linear codes are parity
check codes, defined by C⊥.

Proof. If x ∈ C, then x · y = 0 for all y ∈ C⊥ by definition, so x ∈ (C⊥)⊥. Then
rankC = n− rankC⊥ = n− (n− rank(C⊥)⊥) = rank(C⊥)⊥, so C = (C⊥)⊥.

41

Definition 4.7 (Generator Matrix)
LetC be an (n, k)-code. A generator matrixG forC is a k×nmatrix where the rows
form a basis for C. A parity check matrixH for C is a generator matrix for the dual
code C⊥, so it is an (n− k)× nmatrix.

The codewords of a linear code can be viewed either as linear combinations of rows ofG,
or linear dependence relations between the columns ofH , so C = {x ∈ Fn

2 : Hx = 0}.

§4.2 Syndrome decoding

Definition 4.8 (Syndrome)
Let C be an (n, k)-code. The syndrome of x ∈ Fn

2 is Hx.

If we receive a word x = c + z where c ∈ C and z is the error pattern, Hx = Hz as
Hc = 0. If C is e-error correcting, we precompute Hz for all z for which w(z) ≤ e. On
receiving x, we can compute the syndromeHx and find this entry in the table of values
of Hz. If successful, we decode c = x− z, with d(x, c) = w(z) ≤ e.

Definition 4.9 (Equivalent)
Codes C1, C2 ⊆ Fn

2 are equivalent if there exists a permutation of bits that maps
codewords in C1 to codewords in C2.

Codes are typically only considered up to equivalence.

Lemma 4.4
Every (n, k)-linear code is equivalent to one with generator matrix with block form(
Ik B

)
for some k × (n− k) matrix B.

Proof. LetG be a k×n generator matrix for C. Using Gaussian elimination, we can
transform G into row echelon form

Gij =
{

0 j < ℓ(i)
1 j = ℓ(i)

for some ℓ(1) < ℓ(2) < · · · < ℓ(k). Permuting the columns replaces C with an

42

equivalent code, so wlog we may assume ℓ(i) = i. Hence,

G =

1 ⋆
. . . B

1


Further row operations eliminate ⋆ to give G in the required form.

A message y ∈ Fk
2 viewed as a row vector can be encoded as yG. If G =

(
Ik B

)
, then

yG = (y, yB) where y is the message and yB is a string of check digits.

Definition 4.10 (Systematic Code)
A systematic code is any code whose codewords can be split up in this manner.

We now prove the following lemma that was stated earlier.

Lemma 4.5
rankC + rankC⊥ = n.

Proof. Let C have generator matrix G =
(
Ik B

)
. G has k linearly independent

columns, so there is a linearmap γ : Fn
2 → Fk

2 defined by x 7→ Gxwhich is surjective.
Its kernel is C⊥. By the rank-nullity theorem, dimFn

2 = dim ker γ + dim Im γ, so
n = rankC + rankC⊥ as required.

Lemma 4.6
An (n, k)-code with generator matrixG =

(
Ik B

)
has parity checkmatrixH of the

form
(
−B⊺ In−k

)
.

Proof.

GH⊺ =
(
Ik B

)(−B
In−k

)
= B +B = 2B = 0

So the rows ofH generate a subcode ofC⊥. But rankH = n−k, and rankC⊥ = n−k.
So H = C⊥, and C⊥ has generator matrix H .

Lemma 4.7

43

Let C be a linear code with parity check matrix H . Then, d(C) = d iff

1. any d− 1 columns of H are linearly independent; and

2. a set of d columns of H are linearly dependent.

The proof is left as an exercise.

§4.3 Hamming codes

Definition 4.11 (Hamming Code)
Let d ≥ 2, and let n = 2d − 1. Let H be the d× nmatrix with columns given by the
nonzero elements of Fd

2. The Hamming (n, n − d)-linear code is the (linear) code
with parity check matrix H .

Remark 12. This is only defined up to equivalence.

Lemma 4.8
The Hamming (n, n − d)-code C has minimum distance d(C) = 3, and is a perfect
1-error correcting code.

Proof. Any two columns ofH are linearly independent as otherwise they would be
the same. H has 3 columns 100 . . . 0, 010 . . . 0, 110 . . . 0 which are linearly dependent.
Hence, d(C) = 3. Hence, C is

⌊
3−1

2

⌋
= 1-error correcting. A perfect code is one s.t.

|C| = 2n

V (n,e) . In this case, n = 2d − 1 and e = 1, so 2n

1+2d−1 = 2n−d = |C| as
required.

§4.4 Reed–Muller codes

Let X = {p1, . . . , pn} be a set of size n. There is a correspondence between P(X) and
Fn

2 .

P(X) A 7→1A−−−−→ {f : X → F2}
f 7→(f(p1),...,f(pn))−−−−−−−−−−−−→ Fn

2

The symmetric difference of two sets A,B is A 4 B = (A \B) ∪ (B \ A), which corres-
ponds to vector addition in Fn

2 . Intersection A ∩ B corresponds to the wedge product
x ∧ y = (x1y1, . . . , xnyn).

Let X = Fd
2, so n = 2d = |X|. Let v0 = (1, . . . , 1), and let vi = 1Hi where Hi =

{p ∈ X : pi = 0} is the coordinate hyperplane (1 ≤ i ≤ d).

44

Definition 4.12 (Reed–Muller Code)
Let 0 ≤ r ≤ d. TheReed–Muller codeRM(d, r) of order r and length 2d is the linear
code spanned by v0 and all wedge products of at most r of the the vi for 1 ≤ i ≤ d.

By convention, the empty wedge product is v0.

Example 4.2
Let d = 3, and let X = F3

2 = {p1, . . . , p8} in binary order.

X 000 001 010 011 100 101 110 111
v0 1 1 1 1 1 1 1 1
v1 1 1 1 1 0 0 0 0
v2 1 1 0 0 1 1 0 0
v3 1 0 1 0 1 0 1 0

v1 ∧ v2 1 1 0 0 0 0 0 0
v2 ∧ v3 1 0 0 0 1 0 0 0
v1 ∧ v3 1 0 1 0 0 0 0 0

v1 ∧ v2 ∧ v3 1 0 0 0 0 0 0 0

A generator matrix for Hamming’s original code is a 4×7 submatrix in the top-right
corner.

RM(3, 0) is spanned by v0, and is hence the repetition code of length 8. RM(3, 1) is
spanned by v0, v1, v2, v3, which is equivalent to a parity check extension of Hamming’s
original (7, 4)-code. RM(3, 2) is an (8, 7)-code, and can be shown to be equivalent to a
simple parity check code of length 8. RM(3, 3) is the trivial code F8

2 of length 8.

Theorem 4.1
1. The vectors vi1 ∧ · · · ∧ vis for i1 < · · · < is and 0 ≤ s ≤ d form a basis for Fn

2 .

2. The rank of RM(d, r) is∑r
s=0

(d
s

)
.

Proof. Part (1). There are ∑d
s=0

(d
s

)
= 2d = n vectors listed, so it suffices to show

they are a spanning set, or equivalentlyRM(d, d) is the trivial code. Let p ∈ X , and
let yi be vi if pi = 0 and v0 + vi if pi = 1. Then 1{p} = y1 ∧ · · · ∧ yd. Expanding this
using the distributive law, 1{p} ∈ RM(d, d). But the set of 1{p} for p ∈ X spans Fn

2 ,
as required.

Part (2). RM(d, r) is spanned by vi1 ∧ · · · ∧ vis where i1 < · · · < is and 0 ≤ s ≤ r.
Since these are linearly independent by (1), so a basis. Hence the rank of RM(d, r)
is the number of such vectors, which is∑r

s=0
(d

s

)
.

45

§4.5 New codes from old (again)

Definition 4.13 (Bar Product)
Let C1, C2 be linear codes of length nwhere C2 ⊆ C1. The bar product is C1 | C2 =
{(x | x+ y)a : x ∈ C1, y ∈ C2}.
aThe concatenation of x and x + y.

This is a linear code of length 2n.

Lemma 4.9
1. rank(C1 | C2) = rankC1 + rankC2.

2. d(C1 | C2) = min {2d(C1), d(C2)}.

Proof. Part (1). If C1 has basis x1, . . . , xk and C2 has basis y1, . . . , yℓ, then C1 | C2
has basis

{(xi | xi) : 1 ≤ i ≤ k} ∪ {(0 | yi) : 1 ≤ i ≤ ℓ}

Part (2). Let 0 6= (x | x+y)a ∈ C1 | C2. If y 6= 0, thenw(x | x+y) = w(x)+w(x+y) ≥
w(y) ≥ d(C2). If y = 0, then w(x | x + y) = w(x | x) = 2w(x) ≥ 2d(C1). Hence,
d(C1 | C2) ≥ min {2d(C1), d(C2)}.

There is a nonzero x ∈ C1 with w(x) = d(C1), so d(C1 | C2) ≤ w(x | x) = 2d(C1).
There is a nonzero y ∈ C2 with w(y) = d(C2), giving d(C1 | C2) ≤ w(0 | 0 + y) =
d(C2), giving the other inequality as required.
ax ∈ C1, y ∈ C2 not both 0.

Theorem 4.2
1. RM(d, r) = RM(d− 1, r) | RM(d− 1, r − 1) for 0 < r < d.

2. RM(d, r) has minimum distance 2d−r for all r.

Proof. Part (1). RM(d−1, r−1) ⊆ RM(d−1, r), so bar product defined. Order the
elements ofX = Fd

2 s.t. vd = (0, . . . , 0
2d−1

| 1, . . . , 1
2d−1

) and vi = (v′
i | v′

i) (1 ≤ i ≤ d− 1). If

z ∈ RM(d, r) then z is sum of wedge products of v1, . . . , vd. Write z = x+ (y ∧ vd)
for x, y sums of wedge products of v1, . . . , vd−1. Then x = (x′ | x′)a, some x′ ∈

46

RM(d− 1, r) and y = (y′ | y′), some y′ ∈ RM(d− 1, r − 1). Then

z = x+ (y ∧ vd) = (x′ | x′) + (y′ | y′) ∧ (0, . . . , 0 | 1, . . . , 1)
= (x′ | x′ + y′) ∈ RM(d− 1, r) | RM(d− 1, r − 1).

Part (2). If r = 0, then RM(d, r) is the repetition code of length 2d, which has min
distance 2d.
If r = d, RM(d, r) is the trivial code of length 2d, which has min distance 1 = 2d−d.
We prove the remaining cases by induction on d. From part (1), RM(d, r) =
RM(d− 1, r) | RM(d− 1, r − 1). By induction, the min distance of RM(d− 1, r) is
2d−1−r and the min distance of RM(d − 1, r − 1) is 2d−r. By part (2) of lemma 4.9,
the min distance of RM(d, r) is min

{
2 · 2d−1−r, 2d−r

}
= 2d−r.

aNote x′ is the vector containing the first 2d−1 components of x. Similarly for y.

Remark 13. 1. One could define RM(d, 0) and RM(d, d) and also define recursively
RM(d, r) as a bar product.

2. RM(5, 1) was used by NASA for the Mariner 9 mission to Mars.

3. Decoding procedure using ‘successivemajority verdicts’ is outlined in (Goldie and
Pinch, pages 165-167).

§4.6 GRM Recap

Definition 4.14 (Ring)
A ring R is a set with operations +,× (e.g. Z, Zn).

Definition 4.15 (Field)
A field is a commutative ring where every non-zero element has a multiplicative
inverse (e.g. Q, R, C, Fp).

Every field is an extension (subfield) of Fp, in which case we say its has characteristic p,
or of Q, characteristic 0.

Definition 4.16 (Polynomial Ring)
A polynomial ring with coefficients in R is R[X] =

{∑n
i=0 aiX

i : ai ∈ R,n ∈ N0
}
.

By defn, ∑n
i=0 aiX

i = 0 iff each ai is zero. Note that X2 + X ∈ F2[X] is nonzero, but
always evaluates to zero.
If F is a field, F [X] is a Euclidean domain using the degree function as the Euclidean

47

function, and has a Euclidean division algorithm. If f, g ∈ F [X], g 6= 0, ∃ q, r ∈ F [X] s.t.
f = qg + r with deg r < deg q.

Definition 4.17 (Ideal)
An ideal I ⊆ R is a subgroup under + s.t. r ∈ R, x ∈ I =⇒ rx ∈ I (e.g. 2Z ◁ Z).

Definition 4.18 (Principal Ideal)
The principal ideal generated by x ∈ R is (x) = Rx = xR = {rx : r ∈ R}.

By division algorithm, every ideal in Z or F [X] is principal, generated by an element
of least absolute value and least degree respectively. The generator of a prime ideal is
unique up to multiplication by a unit (an element with multiplicative inverse). Z has
units {±1}, F [X] has units F \ {0}.

Every non-zero element of Z or F [X] can be factored into irreducibles, uniquely up to
order and multiplication by units.

If I ⊴ R ideal then set of cosets R⧸I = {x+ I : x ∈ R} is the quotient ring under nat-
ural choice of +,×. In practice identify Z⧸nZ and {0, 1, . . . , n− 1} and agree to reduce
mod n after each +,×.
Similarly, F [X]⧸(f(X)) ←→

{∑n−1
i=0 aiX

i : ai ∈ F
}
←→ Fn where n = deg f , reducing

after each multiplication using division algo.

§4.7 Cyclic Codes

Definition 4.19 (Cyclic Code)
A linear code C ⊆ Fn

2 is cyclic if

(a0, a1, . . . , an−1) ∈ C =⇒ (an−1, a0, . . . , an−2) ∈ C

We identify F2[X]⧸(Xn − 1) with Fn
2 as above, letting π(a0, a1, . . . , an−1) = a0 + a1X +

· · ·+ an−1X
n−1 mod (Xn − 1).

Lemma 4.10
A code C ⊆ Fn

2 is cyclic iff C = π(C) satisfies

1. 0 ∈ C;

2. f, g ∈ C implies f + g ∈ C;

48

3. f ∈ F2[X], g ∈ C implies fg ∈ C.

Equivalently, C is an ideal of F2[X]⧸(Xn − 1).

Proof. If g(X) = a0 + a1X + · · ·+ an−1X
n−1 mod (Xn − 1), thenXg(X) = an−1 +

a0X + · · ·+ an−2X
n−1 mod (Xn − 1). So C is cyclic iff (1) and (2) hold and if (3)’:

g(X) ∈ C =⇒ Xg(X) ∈ C holds. Note (3)’ is the special case f(X) = X of (3). In
general, f(X) =

∑
aiX

i so

f(X)g(X) =
∑

i

aiX
ig(X)

∈C by (3)

∈ C by (2)

Henceforth, we will identify C with C.

Basic problem: to find all cyclic codes of length n.
The cyclic codes of length n correspond to ideals in F2[X]⧸(Xn − 1). Such ideals corres-
pond to ideals of F2[X] that contain Xn − 1. Since F2[X] is a principal ideal domain,
these ideals correspond to polynomials g(X) ∈ F2[X] dividing Xn − 1.

Theorem 4.3
Let C ⊴ F2[X]⧸(Xn − 1) be a cyclic code. Then ∃! generating polynomial g(X) ∈
F2[X] s.t.

1. C = {f(X)g(X) mod (Xn − 1) : f(X) ∈ F2[X]} = (g);

2. g(X) | Xn − 1.

In particular, p(X) ∈ F2[X] represents a codeword iff g | p.

Proof. Let g(X) ∈ F2[X] be a poly of least degree representing a 6= 0 codeword of
C. Note that deg g < n. Since C is cyclic, (g) ⊆ C.
Now let p(X) ∈ F2[X] represent a codeword. By the division algorithm, p = qg+ r
for q, r ∈ F2[X] where deg r < deg g. Then, r = p − qg ∈ C as C is an ideal. But
deg r < deg g, so r = 0. Hence, g | p. This shows C ⊆ (g) in (1).
For part (2), let p(X) = Xn − 1, giving g | Xn − 1.

Now we show uniqueness. Suppose C = (g1) = (g2). Then g1 | g2 and g2 | g1. So
g1 = cg2 for some unit in c. Units in F2[X] are F2 \ {0} = {1}, so g1(x) = g2(x).

Lemma 4.11

49

Let C be a cyclic code of length nwith gen poly g(X) = a0 + a1X + · · ·+ akX
k with

ak 6= 0. Then C has basis
{
g,Xg,X2g, . . . , Xn−k−1g

}
. In particular, rankC = n− k.

Proof. Linear Independence: Consider a1g+a2Xg+· · ·+an−kX
n−k−1g as f(X)g(X).

Suppose f(X)g(X) = 0 mod (Xn − 1) for some f(X) ∈ F2[X] with deg f < n− k.
Then deg fg < n, so f(X)g(X) = 0, hence f(X) = 0, i.e. every dependence relation
is trivial.

Spanning: Let p(x) ∈ F2[X] represent a codeword. WLOG deg p < n. Since g(X)
is the gen poly, g(X) | p(X) i.e. p(X) = f(X)g(X) for some f(X) ∈ F2[X]. Also
deg f = deg p−deg q < n−k, so p(X) lies in the span of g(X), . . . , Xn−k−1g(X).

Corollary 4.2
Let C be a cyclic code of length nwith gen poly g(X) = a0 + a1X + · · ·+ akX

k with
ak 6= 0. Then, a generator matrix for C is given by

G =


a0 a1 a2 · · · ak 0 0 · · · 0
0 a0 a1 · · · ak−1 ak 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0 a0 a1 · · · ak


This is an (n− k)× nmatrix.

Definition 4.20 (Parity Check polynomial)
Let g be a generator for C. The parity check polynomial is the polynomial h s.t.
g(X)h(X) = Xn − 1.

Corollary 4.3
Writing h(X) = b0 + b1X + · · ·+ bn−k

aXn−k, the parity check matrix is

H =


bn−k bn−k−1 bn−k−2 · · · b1 b0 0 0 · · · 0

0 bn−k bn−k−1 · · · b2 b1 b0 0 · · · 0
...

...
...

...
...

...
0 0 0 · · · 0 bn−k bn−k−1 bn−k−2 · · · b0


which is a k × nmatrix.

a 6= 0.

50

Proof. One can check that the inner product of the ith row of the generator mat-
rix and the jth row of the parity check matrix is the coefficient of Xn−k−i+j in
g(X)h(X) = Xn − 1. Since 1 ≤ i ≤ n− k and 1 ≤ j ≤ k, 0 < n− k − i+ j < n, and
such coefficients are zero. Hence, the rows of G are orthogonal to the rows of H .
Note that as bn−k 6= 0, rankH = k = rankC⊥, so H is the parity check matrix.

Remark 14. Given a polynomial f(X) =
∑m

i=0 fiXi of degreem, the reverse polynomial
is f̌(X) = fn + fn−1X + · · ·+ f0X

M = Xmf
(

1
X

)
. The cyclic code generated by ȟ is the

dual code C⊥.

Lemma 4.12
If n is odd, Xn − 1 = f1(X) . . . ft(X) where the fi(X) are distinct irreducible polys
in F2[X]. Thus, there are 2t cyclic codes of length n.

This is false if n is even, for instance, X2 − 1 = (X − 1)2.

Proof. If Xn − 1 has repeated factor, then ∃ field extensionK over F2 s.t. Xn − 1 =
(X − λ)2g(X) for some λ ∈ K, g ∈ K[X]. Taking formal derivatives, nXn−1 =
2(X − λ)g(X) + (X − λ)2g′(X) so nλn−1 = 0 so λ = 0 as n odda. Also λn = 1 E.
aWe are in F2 so n even will work

§4.8 Reminders About Finite Fields

Theorem 4.4
Suppose p prime, Fp = Z⧸pZ is a field, and if f(X) ∈ Fp[X] is irreducible, then
K = Fp[X]⧸(f) is a field and has order pdeg f . Moreover, any finite field arises in this
way.

Theorem 4.5
If q = pα is a prime power where α ≥ 1, ∃ field Fq of order q unique up to isomorph-
ism.

Warning 4.2
Fq 6' Z⧸qZ if α > 1.

51

Theorem 4.6
The multiplicative group F×

q = Fq \ {0} is cyclic; there exists β ∈ Fq s.t. F×
q = 〈β〉 ={

1, β, . . . , βq−2}. Such a β is called a primitive element.

§4.9 BCH codes

BCH codes are a particular type of cyclic code.

Let n be an odd integer, and let r ≥ 1 s.t. 2r ≡ 1 mod n, which always exists as 2 is
coprime to n. Let K = F2r , and define µn(K) = {x ∈ K : xn = 1} ≤ K×, which is a
cyclic group. Since n | (2r − 1) = |K×|, µn(K) is the cyclic group of order n. Hence,
µn(K) =

{
1, α, α2, . . . , αn−1} for some primitive nth root of unity α ∈ K.

Definition 4.21 (Cyclic Code of Length n with Defining Set)
The cyclic code of length n with defining set A ⊆ µn(K) is the code

C =
{
f(X) ∈ F2[X]⧸(Xn − 1) : ∀ a ∈ A, f(a) = 0

}
The gen poly g(X) is the nonzero poly of least degree s.t. g(a) = 0 ∀ a ∈ A. Equivalently,
g is the lcm of the minimal polys of the elements of A.

Definition 4.22 (BCH Code)
The cyclic code of length n with defining set

{
α, α2, . . . , αδ−1

}
is a BCH code with

design distance δ.

Theorem 4.7
A BCH code C with design distance δ has minimum distance d(C) ≥ δ.

This proof needs the following result.

Lemma 4.13

52

The Vandermonde matrix satisfies

det


1 1 1 · · · 1
x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n
...

...
...

xn−1
1 xn−1

2 xn−1
3 · · · xn−1

n

 =
∏

1≤j<i≤n

(xi − xj)

Proof. Look it up.

Proof of Theorem 4.7. Consider

H =


1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...
...

...
1 αδ−1 α2(δ−1) · · · α(δ−1)(n−1)


This is a (δ − 1)× nmatrix. Any collection of (δ − 1) columns is independent as it
forms a Vandermonde matrix. As any codeword of C is s.t. Hc = 0, c satisfies δ− 1
independent linear relations. Hence every nonzero codeword has weight at least δ,
giving d(C) ≥ δ.

Note thatH in the proof above is not a parity check matrix, as its entries do not lie in F2.
If worried about the proof, look at the addendum on moodle.

§4.9.1 Decoding BCH Codes

Let C be a cyclic code with defining set
{
α, α2, . . . , αδ−1

}
where α ∈ K is a primitive

nth root of unity. By theorem 4.7, its minimum distance is at least δ, so we should be
able to correct t =

⌊
δ−1

2

⌋
errors. Suppose we send c ∈ C through the channel, and

receive r = c + e where e is the error pattern with at most t nonzero errors. Note
that r, c, e correspond to polynomials r(X), c(X), e(X) =

∑n−1
i=0 eiX

i, and c(αj) = 0 for
j ∈ {1, . . . , δ − 1} as c is a codeword. Hence, r(αj) = e(αj).

Definition 4.23 (Error Locator Polynomial)
The error locator polynomial of an error pattern e ∈ Fn

2 is

σ(X) =
∏
i∈E

(1− αiX) ∈ K[X]

53

where E = {i : ei = 1}.

Aim: Assuming that deg σ = |E| ≤ t, where 2t + 1 ≤ δ, we want to recover σ from
r(X).

Theorem 4.8
Suppose deg σ = |E| ≤ t where 2t + 1 ≤ δ. Then σ(X) is the unique polynomial in
K[X] of least degree s.t.

1. σ(0) = 1;

2. σ(X)
∑2t

j=1 r(αj)Xj = ω(X) mod X2t+1 for some ω(X) ∈ K[X] of degree at
most t.

Proof. Define ω(X) = −Xσ′(X), called the error co-locator. Hence,

ω(X) =
∑
i∈E

αiX
∏
j 6=i
j∈E

(1− αjX)

This polynomial has degω = deg σ. Consider the ringK[[X]] =
{∑∞

i=0 piX
i : pi ∈ K

}
of formal power series. In this ring,

ω(X)
σ(X)

=
∑
i∈E

αiX

1− αiX
=
∑
i∈E

∞∑
j=1

(αiX)j =
∞∑

j=1
Xj

∑
i∈E

(αj)i =
∞∑

j=1
e(αj)Xj

Hence σ(X)
∑∞

j=1 e(αj)Xj = ω(X). By definition of C, we have c(αj) = 0 for all
1 ≤ j ≤ δ − 1. Hence c(αj) = 0 for 1 ≤ j ≤ 2t. As r = c + e, r(αj) = e(αj) for all
1 ≤ j ≤ 2t, hence σ(X)

∑2t
j=1 r(αj)Xj = ω(X) modX2t+1. This verifies (1) and (2)

for this choice of ω. ω(X) = −Xσ′(X) so degω = deg σ = |E| ≤ t.

For uniqueness, suppose there exist σ̃, ω̃ ∈ K[X] with the properties (1), (2).
WLOG, we can assume deg σ̃ ≤ deg σ. σ(X) has distinct nonzero roots, so
ω(X) = −Xσ′(X) is nonzero at these roots. Hence σ, ω are coprime.
By (2), σ̃(X)ω(X) = σ(X)ω̃(X) mod X2t+1. But the degrees of σ, σ̃, ω, ω̃ are at
most t, so this congruence is an equality. But σ(X) and ω(X) are coprime, so σ | σ̃,
but deg σ̃ ≤ deg σ by assumption, so σ̃ = λσ for some λ ∈ K. By (1), σ(0) = σ̃(0)
hence λ = 1, giving σ̃ = σ.

Decoding Algorithm
Suppose that we receive r(X) and wish to decode it.

Recall e(αj) = r(αj) for j = 1, 2, . . . , 2t.

• Set σ(X) = σ0 + σ1X + · · · + σtX
t and ∑t

i=0 ωiX
i = σ(X)(r(α)X + r(α2)X2 +

54

· · ·+ r(α2t)X2t + e(α2t+1)X2t+1 + . . .)1.

• Coeffs of Xi for t < i ≤ 2t are ∑t
j=0 σjr(αi−j) = 0 which don’t involve any of

e(αj)Xj for all 1 ≤ j ≤ 2t.

• So we obtain a system of linear equations
r(αt+1) r(αt) . . . r(α)
r(αt+2) r(αt+1) . . . r(α2)

...
r(α2t) r(α2t−1) . . . r(αt)



σ0
σ1
...
σt

 = 0

• So ∃σ 6= 0 in kernel. This determines σ(X), hence what the errors are that we need
to correct.

Example 4.3 (Reed-Solomon)
If K = Fq and n ≤ q − 1, where q must be a prime power for K to be a field, this
is the Reed-Solomon code. This is used in CDs. There are two RS codes over F28

with δ = 5 with length n = 32, 28 respectively. Error bursts caused by scratches on
the CDs of about 4000 bits can be corrected.

Example 4.4
Consider n = 7, and X7 − 1 = (X + 1)(X3 + X + 1)(X3 + X2 + 1) in F2[X]. Let
g(X) = X3 + X + 1, so h(X) = (X + 1)(X3 + X2 + 1) = X4 + X2 + X + 1. The
parity check matrix is

H =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1


The columns are the elements of F3

2 \ {0}. This is the Hamming (7, 4)-code.

Let K be a splitting fielda for X7 − 1; we can take K = F8. Let β ∈ K be a root of
g. Note that β3 = β + 1b, so β6 = β2 + 1, so g(β2) = 0. So the BCH code defined
by
{
β, β2} has generator polynomial g(X), again proving that this is Hamming’s

(7, 4)-code. This code has design distance 3, so d(C) ≥ 3, and we know Hamming’s
code has minimum distance exactly 3.
aThis is from Galois Theory. We want to add roots till X7 − 1 splits into linear factors.
bIn F2.

1We proved the degree of ω(X) is a most t in previous thm and this eqn is not modulo anything.

55

§4.10 Shift registers

Definition 4.24 ((General) Feedback Shift Register)
A (general) feedback shift register is a map f : Fd

2 → Fd
2 given by

f(x0, . . . , xd−1) = (x1, . . . , xd−1, C(x0, . . . , xd−1))

where C : Fd
2 → F2. We say that the register has length d.

The stream associated to an initial fill (y0, . . . , yd−1) is the sequence y0, y1, . . . , yn, . . .
with yn = C(yn−d, . . . , yn−1) ∀ n ≥ d.

Definition 4.25 (Linear Feedback Shift Register)
The general feedback shift register f : Fd

2 → Fd
2 is a linear feedback shift register

(LFSR) if C is linear, so

C(x0, . . . , xd−1) =
d−1∑
i=0

aixi, ai ∈ F2

We usually set a0 = 1.

The stream produced by a LFSR is now given by the recurrence relation yn =∑d−1
i=0 aiyn−d+i over F2. We can define the auxiliary polynomial P (X) = Xd +

ad−1X
d−1 + · · ·+ a1X + a0. We sometimes write ad = 1, so P (X) =

∑d
i=0 aiX

i.

Over C: The general solution to a recurrence relation is a linear combination of
αn, nαn, . . . , nt−1αn for α a root of P (X) with multiplicity t.

Over F2: However, we have a recurrence relation over F2 and n2 ≡ n mod 2 so we only
get two solutions, which is not enough. We resolve this by replacing njαn by

(n
j

)
αn, i.e.

the general solution is a linear combination of
(n

0
)
αn,

(n
1
)
αn, . . .

Definition 4.26 (Feedback Polynomial)
The feedback polynomial is P̌ (X) = a0X

d + · · · + ad−1X + 1 =
∑d

i=0 ad−iX
i. A

sequence y0, . . . of elements of F2 has generating function G(X) =
∑∞

j=0 yjX
j ∈

F2[[X]].

Theorem 4.9
The stream (yn)n≥0 comes from a LFSR with auxiliary poly P (X) iff its generating
fcn is (formally) of the form A(X)/P̌ (X) with A ∈ F2[X] s.t. degA < deg P̌ .

Note that P̌ (X) = Xdeg PP (X−1) is the reverse of P .

56

Proof. Let P (X) and P̌ (X) be as above. We require

G(X)P̌ (X) =

 ∞∑
j=0

yjX
j

(d∑
i=0

ad−iX
i

)

to be a poly of degree < d. This holds iff the coefficient of Xn in G(X)P̌ (X) is 0
for all n ≥ d, i.e. ∑d

i=0 ad−iyn−i = 0. This holds iff yn
a =

∑d−1
i=0 aiyn−d+i for all

n ≥ d. This is precisely the form of a stream that arises from a LFSR with auxiliary
polynomial P .
aad = 1

Remark 15. The problem of recovering the LFSR from its stream and the problem of
decoding BCH codes both involve writing a power series as a ratio of polynomials.

§4.11 The Berlekamp–Massey method

Let (xn)n≥0 be the output of a (binary) LFSR. We wish to find the unknown length d
and values a0(= 1), a1, . . . , ad−1, ad(= 1) s.t. adxn +

∑d
i=1 ad−ixn−i = 0 for all n ≥ d. We

have 
xd xd−1 · · · x1 x0
xd+1 xd · · · x2 x1
...

...
...

x2d−1 x2d−2 · · · xd xd−1
x2d x2d−1 · · · xd+1 xd


︸ ︷︷ ︸

Ad


ad

ad−1
...
a1
a0

 = 0 (∗)

We look successively atA0 =
(
x0
)
, A1 =

(
x1 x0
x2 x1

)
, . . . , starting atAr if we know d ≥ r.

For eachAi, we compute its determinant. If |Ai| 6= 0, then d 6= i. If |Ai| = 0, we solve (∗)
on the assumption that d = i, giving a candidate for the coefficients a0, . . . , ad−1. This
candidate can be checked over as many terms of the stream as desired. If the test fails,
we know d > i.

Remark 16. We are just finding the minimal d s.t. ∃ a satisfying xn =
∑d

i=1 an−ixn−i over
F2.

Remark 17. Usually Gaussian elimination is easier than expanding rows/ cols.

57

§5 Cryptography

§5.1 Cryptosystems

We want to modify a message s.t. it becomes unintelligible to an eavesdropper Eve.
Certain (secret) information is shared between two participants Alice and Bob, called
the key, chosen from a set of possible keys K. The unencrypted message is called the
plaintext, which lies in a setM, and the encrypted message is called the ciphertext,
and lies in a set C. A cryptosystem consists of (K,M, C) together with the encryption
function e : M×K → C and decryption function d : C × K →M. These maps have the
property that d(e(m, k), k) = m for allm ∈M, k ∈ K.

Example 5.1
SupposeM = C = {A,B, . . . , Z}⋆ = Σ⋆.

• The simple substitution cipher defines K to be the set of permutations of Σ.
To encrypt a message, each letter of plaintext is replaced with its image under
a chosen permutation π ∈ K.

The Vigenère cipher has K = Σd for some d. We identify Σ and Z⧸26Z. To en-
code a message we add it to the key mod 26, repeating the key so that it is the cor-
rect length. For instance, encrypting the plaintext ATTACKATDAWN with the key
LEMON gives ciphertext ATTACKATDAWN + LEMONLEMONLE = LXFOPVE-
FRNHR. If d = 1, this is the Caesar cipher.

§5.2 Breaking cryptosystems

Eve may know e and d, as well as the prob distributions ofK,M, but she does not know
the key itself. She seeks to recover the plaintext from a given string of ciphertext. There
are three possible attack levels.

1. (ciphertext-only) Eve only knows some piece of ciphertext.

2. (known-plaintext) Eve knows a considerable length of plaintext and its corres-
ponding ciphertext, but not the key. In other words, she knowsm and e(m, k), but
not k.

3. (chosen plaintext) Eve can acquire the ciphertext for any plaintext message; she
can generate e(m, k) for anym.

Remark 18. The simple substitution cipher and Vigenère cipher fail at Level 1 in English
if the messages are sufficiently long, as we can perform frequency analysis. Even if the
plaintext is suitably random, both examples can fail at Level 2. For modern applications,
Level 3 security is desirable.

58

Consider a cryptosystem (K,M, C). We model the keys and messages as independent
r.v.sK,M taking values in K,M. The ciphertext r.v. is C = e(M,K) ∈ C.

Definition 5.1 (Perfect Secrecy)
A cryptosystem (M,K, C) has perfect secrecy ifH(M | C) = H(M), or equivalently,
M and C are independent, or I(M ;C) = 0.

Lemma 5.1
Perfect secrecy =⇒ |K| ≥ |M|

Proof. We need to prove that there must be at least as many possible keys as there
are possible plaintext messages. “Possible” means the prob of being chosen is > 0.

Fix message m0 ∈ M and a key k0 ∈ K, both with prob > 0. Then c0 = e(m0, k0)
has prob > 0.
For any possible messagem ∈M,

P(C = c0 |M = m) = P(C = c0) > 0.

So for eachm ∈M ∃ k ∈ K s.t. e(m, k) = c0. Thus |K| ≥ |M|.

Definition 5.2 (Message Equivocation)
The message equivocation is H(M | C).

Definition 5.3 (Key Equivocation)
The key equivocation is H(K | C).

Lemma 5.2
H(M | C) ≤ H(K | C).

Proof. Note that M = d(C,K), hence H(M | C,K) = 0. Therefore, H(C,K) =
H(M,C,K). So

H(K | C) = H(K,C)−H(C)
= H(M,C,K)−H(M | K,C)−H(C)
= H(M,K,C)−H(C)

59

= H(K |M,C) +H(M,C)−H(C)
= H(K |M,C)

≥0

+H(M | C)

Hence H(K | C) ≥ H(M | C).

LetM = C = A, and suppose we send n messages modelled as M (n) = (M1, . . . ,Mn)
encrypted as C(n) = (C1, . . . , Cn) using the same keyK.

Definition 5.4 (Unicity Distance)
The unicity distance is the least n s.t. H

(
K | C(n)

)
= 0; it is the smallest number of

encrypted messages required to uniquely determine the key.

Now,

H
(
K | C(n)

)
= H

(
K,C(n)

)
−H

(
C(n)

)
= H

(
K,M (n), C(n)

)
−H

(
C(n)

)
= H

(
K,M (n)

)
−H

(
C(n)

)
= H(K) +H

(
M (n)

)
−H

(
C(n)

)
asK,M (n) are independent.

We make the following assumptions.

1. All keys are equally likely, so H(K) = log |K|.

2. H
(
M (n)

)
≈ nH for some constant H and sufficiently large n (true for many

sources, including Bernoulli sources).

3. All sequences of ciphertext are equally likely, so H
(
C(n)

)
= n log |A|. Good

cryptosystems satisfy this.

Hence,

H
(
K | C(n)

)
= log |K|+ nH − n log |A|

This is nonnegative iff

n ≤ U = log |K|
log |A| −H

Equivalently, log |A|
R log |A| where R = 1− H

log |A| is the redundancy of the source. Recall that
0 ≤ H ≤ log |A|. To make the unicity distance large, we can make the number of keys
large, or use a message source with little redundancy.

60

§5.3 One-time pad

Consider streams (sequences) in F2 representing the plaintext p0, p1, . . . , the key stream
k0, k1, . . . , and the ciphertext z0, z1, . . . where zn = pn + kn.

Definition 5.5 (One-Time Pad)
A one-time pad is a cryptosystem where k is generated randomly; the ki are iid
uniform on 0, 1.

z = p+ k is now a stream of iid r.v.s taking values of 0 or 1 with prob 1
2 . Hence, without

the key stream, deciphering is impossible, so the unicity distance is infinite.

Lemma 5.3
A one-time pad has perfect secrecy

Proof. P(M = m,C = c) = P(M = m,K = c −m) = P(M = m)P(K = c −m) =
P(M = m) 1

2n for amessage of lengthn and c−m ismod 2. SoM,C independent.

In order to effectively use a one-time pad, we need to generate a random key stream. We
then need to share the key stream to the recipient, which is exactly the initial problem.
In most applications, the one-time pad is not practical.
Instead, we share an initial fill k0, . . . , kd−1 to be used in a shared FSR of length d to
generate k. We then apply the following result.

Lemma 5.4
Let x0, x1, . . . be a stream in F2 produced by a FSR of length d. Then ∃ M,N ≤ 2d

s.t. xN+r = xr ∀ r ≥M .

Proof. Let the register be f : Fd
2 → Fd

2, and let vi = (xi, . . . , xi+d−1). Then for all i, we
have f(vi) = vi+1. Since

∣∣∣Fd
2

∣∣∣ = 2d, the vectors v0, v1, . . . , v2d cannot all be distinct.
So ∃ 0 ≤ a < b ≤ 2d s.t. va = vb. Let M = a and N = b − a, so vM = vM+N so by
inductiona we have vr = vr+N for all r ≥M .
aBy applying f .

Remark 19.

• The maximum period of a FSR of length d is 2d.

• For a LFSR, the maximum period is 2d − 1. Indeed the bound in lemma 5.4 is
improved by 1 (Sheet 4).

61

• Stream ciphers using LFSR fail at level 2 due to the Berlekamp–Massey method.

• Why should we use this cryptosystem?

– It’s cheap, fast, and easy to use.

– Encryption and decryption can be performed on-the-fly, without needing the
entire codeword first.

– Error tolerant.

We can also generate new key streams from old ones.

Lemma 5.5
Let (xn), (yn) be outputs from LFSRs of lengthM,N respectively. Then,

1. the sequence (xn + yn) is the output of a LFSR of lengthM +N ;

2. the sequence (xnyn) is the output of a LFSR of lengthMN .

Proof (Not Lectured). Assume for simplicity that the auxiliary polynomials
P (X), Q(X) each have distinct roots α1, αM and β1, . . . , βN in a field K extend-
ing F2. Then xn =

∑M
i=1 λiα

n
i and yn =

∑N
i=1 µjβ

n
j where λi, µj ∈ K. Now,

xn + yn =
∑M

i=1 λiα
n
i

∑N
i=1 µjβ

n
j is produced by a LFSR with auxiliary polynomial

P (X)Q(X). For the second part, xnyn =
∑M

i=1
∑n

j=1 λiµj(αiβj)n is the output of a
LFSR with auxiliary polynomial∏N

i=1
∏M

j=1(X − αiβj).

Adding outputs of LFSRs is no more economical than producing the same string with
a single LFSR. Muliplying streams does increase the effective length of the LFSR, but
xnyn = 0 when either xn or yn are zero, so we gain little extra data. NonLFSRs are in
general hard to analyse; in particular, an eavesdropper may understand the FSR better
than Alice and Bob.

§5.4 Asymmetric ciphers

Stream ciphers are examples of symmetric cryptosystems. In such a system, the de-
cryption process is the same, or is easily deduced from, the encryption process. In an
asymmetric cryptosystem, the key is split into two parts: the private key for decryption,
and the public key for encryption. Knowing the encryption and decryption processes
and the public key, it should still be hard to find the private key or to decrypt the mes-
sages. This aim implies security at level 3. In this case, there is also no key exchange
problem, since the public key can be broadcast on an open channel.

We base asymmetric cryptosystems on certainmathematical problems in number theory
which are believed to be ‘hard’, such as the following.

62

1. Factoring. Let N = pq for p, q large prime numbers. Given N , the task is to find p
and q.

2. Discrete logarithm problem. Let p be a large prime and g be a primitive root mod
p (a generator of F×

p). Given x, we wish to find a s.t. x ≡ ga mod p.

Definition 5.6 (Polynomial Time)
An algorithm runs in polynomial time if the number of operations needed to per-
form the algorithm is at most cNd where N is the input size, and c, d are constants.

Example 5.2
An algorithm for factoringN has input size log2N , roughly the number of bits in its
binary expansion. Polynomial time algorithms include arithmetic operations on in-
tegers including the division algorithm, computation of greatest common divisors,
and the Euclidean algorithm. We can also compute xα mod N in polynomial time
using repeated squaring; this is called modular exponentiation. Primality testing
can be performed in polynomial time.

Polynomial time algorithms are not known for factoring and discrete logarithms.
However, we have elementary methods for computing them that take exponential
time. If N = pq, dividing N by successive primes up to

√
N will find p and q but

takes O(
√
N) = O(2

B
2) steps where B = log2N .

We describe the baby-step, giant-step algorithm for the discrete logarithm problem.
Set m =

⌈√
p
⌉
, and write a = qm + r for 0 ≤ q, r < m. Then, x ≡ ga = gqm+r mod

p, so gqm = g−rxmod p. We list all values of gqm and g−rxmod p; we then sort the
lists and search for a match. This takes O(√p log p) steps.

The best known methods for solving the examples above use a factor base method,
called the modular number sieve. It has running time

O
(
exp

(
c(logN)

1
3 (log logN)

2
3
))

where c is a known constant.

§5.5 Rabin cryptosystem

Recall that Euler’s totient function is denoted φ, where φ(n) is the number of integers
less than n which are coprime to n. Equivalently, φ(n) =

∣∣∣∣(Z⧸nZ)×
∣∣∣∣. By Lagrange’s

theorem, aφ(N) ≡ 1 mod N for each a coprime to N ; this result is sometimes known as
the Fermat–Euler theorem. If N = p is prime, ap ≡ a mod p, which is Fermat’s little
theorem.

63

Lemma 5.6
Let p = 4k− 1 be a prime, and let d ∈ Z. If x2 ≡ dmod p is solvable, one solution is
x ≡ dk mod p.

Proof. Suppose x0 is a solution, so x2
0 ≡ dmod p. WLOG we can assume x0 6≡ 0, or

equivalently, x0 ∤ p. Then x2
0 ≡ d so d2k−1 ≡ x

2(2k−1)
0 ≡ xp−1

0 ≡ 1 by Fermat’s little
thm. Hence,

(
dk
)2
≡ d.

In the Rabin cryptosystem, the private key consists of two large distinct primes p, q ≡
3 mod 4. The public key is N = pq. M = C = {1, . . . , N − 1} = Z×

N . We encrypt
a plaintext message m as c = m2 mod N . Usually, we restrict our messages so that
(m,N) = 1 andm >

√
N .

Receiving ciphertext c, we can solve for x1, x2 s.t. x2
1 ≡ cmod p and x2

2 ≡ cmod q using
the previous lemma. Then, we use the Chinese remainder theorem, we can find x s.t.
x ≡ x1 mod p and x ≡ x2 mod q, hence x2 ≡ cmod N2. Indeed, running the Euclidean
algorithm on p, q gives integers r, s s.t. rp+ sq = 1, then we can take x = sqx1 + rpx2.

Lemma 5.7
1. Let p be an odd prime, and let (d, p) = 1. Then x2 ≡ dmod p has no or exactly

two solutions.

2. LetN = pqwhere p, q are distinct odd primes, and let (d,N) = 1. Then x2 ≡ d
mod N has no or exactly four solutions.

Proof. Part (1). If there is a solution x, −x also works. If x, y are solutions, then
x2 ≡ y2 mod p so p | (x2 − y2) = (x − y)(x + y), so either p | x − y or p | x + y, so
x = ±y mod p.

Part (2). If x0 is a solution, then by the Chinese remainder theorem, there exist
solutions x with x ≡ ±x0 mod p and x ≡ ±x0 mod q. This gives four solutions as
required. By (1), these are the only possible solutions.

Hence, to decrypt the Rabin cipher, we must find all four solutions to x2 ≡ c mod N .
Messages should include enough redundancy to uniquely determine which of these
four solutions is the intended plaintext.

Theorem 5.1
Breaking the Rabin cryptosystem is essentially as difficult as factoring N .

2By squaring x2 ≡ x2
1 mod p and x2 ≡ x2

2 mod q so x = pn + c = qm + c. As p, q coprime x = pqa + c.

64

Proof. If we can factoriseN as pq, we have seen that we can decrypt messages. Con-
versely, suppose we can break the cryptosystem, so we have an algorithm to find
square roots moduloN . Choose xmodN at random, and use the algorithm to find
y s.t. y2 ≡ x2 mod N . With prob 1

2 , x 6= ±y mod N . Then, (N, x− y) is a nontrivial
factor of N . If this fails, choose another x, and repeat until the prob of failure

(
1
2

)r

is acceptably low.

§5.6 RSA cryptosystem

SupposeN = pqwhere p, q are distinct odd primes. We claim that if we know amultiple
m of φ(N) = (p− 1)(q − 1), then factoring N is ‘easy’. Write op(x) for the order of x as
an element of

(
Z⧸pZ

)×
. Writem = 2abwhere a ≥ 1, b odd. Let

X =
{
x ∈

(
Z⧸NZ

)×
: op(xb) 6= oq(xb)

}

Theorem 5.2
1. If x ∈ X , ∃ 0 ≤ t < a s.t. (x2tb − 1, N) is a nontrivial factor of N .

2. |X| ≥ 1
2

∣∣∣∣(Z⧸NZ
)×
∣∣∣∣ = 1

2(p− 1)(q − 1).

Proof. Part (1). By the Fermat–Euler theorem, xφ(N) ≡ 1 mod N . Hence xm ≡ 1
mod N . But m = 2ab, so setting y = xb mod N , we obtain y2a ≡ 1 mod N . In
particular, op(y) and oq(y) are powers of 2. Since x ∈ X , op(y) 6= oq(y), so wlog
suppose op(y) < oq(y). Let op(y) = 2t, so 0 ≤ t < a. Then y2t ≡ 1 mod p, but
y2t 6≡ 1 mod q. So (y2t − 1, N) = p as required.

Proof (Non Examinable). Part (2). The Chinese remainder theorem provides a mul-
tiplicative group isomorphism(

Z⧸NZ
)×
→
(
Z⧸pZ

)×
×
(
Z⧸qZ

)×

mapping x to (xmod p, xmod q). We claim that if we partition
(
Z⧸pZ

)×
according

to the value of op(xb), then each equivalence class has size at most

1
2

∣∣∣∣(Z⧸pZ)×
∣∣∣∣ = 1

2
(p− 1)

We show that one of these subsets has size exactly 1
2(p − 1). Let g be a primitive

65

root mod p, so
(
Z⧸pZ

)×
= 〈g〉. By Fermat’s little theorem, gp−1 ≡ 1 mod p, so

gm = g2ab ≡ 1 mod p. Hence, op(gb) is a power of 2, say 2t ≤ a. Let x = gk for some
0 ≤ k ≤ p− 2, then xb = (gb)k, so op(xb) = 2t

(2t,k) . So op(xb) = 2t iff k is odd, so

op(xb) = op(gbk) =
{
op(gb) = 2t if k odd
< 2t if k even

Thus,
{
gk mod p | k odd

}
is the set as required, proving the claim. To finish, for

each y ∈
(
Z⧸qZ

)×
, the set

{
x ∈

(
Z⧸pZ

)×
∣∣∣∣ op(xb) 6= oq(xb)

}
has at least 1

2(p− 1) elements. Applying the Chinese remainder theorem,

|X| =
∣∣∣∣{(x, y) ∈

(
Z⧸pZ

)×
×
(
Z⧸qZ

)×
∣∣∣∣ op(xb) 6= oq(xb)

}∣∣∣∣ ≥ 1
2

(p− 1)(q − 1) = 1
2
φ(N)

To factorise N when x ∈ X , compute (y2t − 1, N) for 0 ≤ t < a. We know it is p for one
of these choices, and hence obtain a factor of N .

§5.7 The RSA Cryptosystem

In the RSA cryptosystem, the private key consists of large distinct primes p, q chosen at
random. LetN = pq, and choose the encrypting exponent e randomly s.t. (e, φ(N)) = 1,
for instance taking e prime larger than p, q. By Euclid’s algorithm, there exist d, k s.t.
de− kφ(N) = 1; d is called the decrypting exponent.

The public key is (N, e), and we encrypt m ∈ M as c ≡ me mod N . The private key
is (N, d), and we decrypt c ∈ C as x ≡ cd mod N . By the Fermat–Euler theorem, x ≡
mde ≡ m1+kφ(N) ≡ m mod N , noting that the prob that (m,N) 6= 1 is small enough to
be ignored. Hence, the decrypting function is inverse to the encrypting function.

Corollary 5.1
Finding the RSA private key, d, from the public key (N, e) is essentially as difficult
as factoring N .

Proof. We have already shown that if we can factoriseN , we can find d. Conversely,
suppose there is an algorithm to find d given N and e. Then de ≡ 1 mod φ(N).

66

Takingm = de− 1 in the proof of part (1) of the theorem above, we can factoriseN
if we have a x ∈ X . A random x ∈

(
Z⧸nZ

)×
will lie inX with prob≥ 1

2 . Thus after
r such random choices, we find a factor of N with prob ≥ 1−

(
1
2

)r
.

Remark 20. We have shown that finding (N, d) from the public key (N, e) is as hard as
factoring N . It is unknown whether decrypting messages sent via RSA is as hard as
factoring.

RSA avoids the issue of needing to share keys, but it is slow. Symmetric ciphers are often
faster. So we are still interested in sharing keys.

Shamir proposed:

Example 5.3 (Shamir’s padlock example)
Let A = Zp. Alice chooses a ∈ Z×

p−1 and computes ga. She finds a′ s.t. aa′ = 1 mod
p − 1 by Euclid. Bob chooses b ∈ Z×

p−1 and computes gb. He similarly finds b′ s.t.
bb′ = 1 mod p− 1.

Let m be a message in Zp. She encodes m as c = ma mod p. She then sends this
to Bob, who computes d = cb mod p. He sends this back to Alice, who computes
e = da′ mod p. She sends this back to Bob, who computes eb′ mod p. By Fermat’s
little theorem, eb′ ≡ da′b′ ≡ cba′b′ ≡ maba′b′ ≡ m.

m ma cb da′
eb′A B A B

This suggests:

Example 5.4 (Diffie–Hellman key exchange)
Alice and Bob wish to agree on a secret key k. Let p be a large prime, and g a
primitive root mod p. Alice chooses an exponent α ∈ Zp−1 and sends gα mod p to
Bob. Bob chooses an exponent β and sends gβ mod p to Alice. Both Alice and Bob
compute k = gαβ , which can be used as their secret key. An eavesdropper must find
gαβ knowing g, gα, and gβ . Diffie and Hellman conjectured that this problem is as
difficult as solving the discrete logarithm problem.

§5.8 Secrecy and attacks

Consider a messagem sent by Alice to Bob. Here are some possible aims that the parti-
cipants may have in communication.

1. Secrecy: Alice and Bob can be sure that no third party can read the message.

67

2. Integrity: Alice and Bob can be sure that no third party can alter the message.

3. Authenticity: Bob can be sure that Alice sent the message.

4. Non-repudiation: Bob can prove to a third party that Alice sent the message.

Example 5.5 (Authenticity using RSA)
Suppose Alice uses a private key (N, d) to encryptm. Anyone can decryptm using
the public key (N, e) as (md)e = (me)d = m, but they cannot forge a message sent
by Alice. Suppose Bob picks a random messagem and sends it to Alice; if Bob then
receives a message back from Alice which after decryption ends in m, then he can
be sure it comes from Alice.

Signature schemes preserve integrity and non-repudiation. They also prevent tamper-
ing in the following sense.

Example 5.6 (Homomorphism Attack)
Suppose a bank sends messages of the form (M1,M2) where M1 represents the
client’s name and M2 represents an amount of money to be transferred into their
account. Suppose that messages are encoded using RSA as (Z1, Z2) = (M e

1 ,M
e
2),

where all calculations are performed modulo N . A client C transfers £100 to their
account, and observes the encrypted message (Z1, Z2). Then, sending (Z1, Z

3
2) to

the bank, C becomes a millionaire without breaking RSA. Alternatively, one could
simply send (Z1, Z2) to the bank many times, gaining more money each time; this
particular attack is defeated by timestamping the messages.

Definition 5.7 (Signed)
A messagem is signed as (m, s) where the signature s = s(m, k) is a function ofm
and the private key k.

The recipient can check the signature using the public key to verify authenticity of the
message. The signature function or trapdoor function s : M× K → S is designed s.t.
without knowledge of the private key, one cannot sign messages, but anyone can check
whether a signature is valid. Note that the signature is associated to each message, not
to each sender.

Example 5.7 (Signatures using RSA)
Suppose Alice has a private key (N, d), and broadcasts a public key (N, e). She signs
a messagem as (m, s) where s = md mod N . The signature is verified by checking
se = m.

68

This technique is vulnerable to the homomorphism attack. This is also vulnerable to
the existential forgery attack, in which an attacker produces valid signed messages
of the form (se mod N, s) after choosing s first. Hopefully, such messages are not
meaningful.

To solve these problems, we could use a better signature scheme. In addi-
tion, rather than signing a message m, we instead sign the digest h(m) where
h : M → {1, . . . , N − 1} is a hash function. A hash function is a publicly known
function for which it is very difficult to find pairs of messages with matching
hashes; such a pair is called a collision. Examples of hash functions include MD5
and the SHA family.

§5.9 Elgamal Signature Scheme

Alice chooses a large prime p and a random integer uwith 1 < u < p. Let g be a primitive
root mod p. The public key is p, g, y = gu mod p. The private key is u.

To send a messagemwith 0 ≤ m ≤ p− 1, Alice randomly chooses k with 1 ≤ k ≤ p− 2
coprime to p− 1. She computes r, s with 1 ≤ r ≤ p− 1 and 1 ≤ s ≤ p− 2 satisfying

r ≡ gk mod p; m ≡ ur + ks mod (p− 1)

Since k is coprime to p − 1, the congruence for s always has a solution. Alice signs the
messagemwith the signature (r, s). Now,

gm ≡ gur+ks ≡ (gu)r(gk)s ≡ yrrs mod p

Bob accepts a signature if gm ≡ yrrs mod p. To forge a signature, obvious attacks involve
the discrete logarithm problem, finding u from y = gu.

Lemma 5.8
Let a, b,m ∈ N and consider the congruence ax ≡ b mod m. This has either no or
gcd(a,m) solutions for xmodm.

Proof. Let d = gcd(a,m). If d ∤ b, there is no solution. If d | b, we can rewrite the
congruence as a

dx ≡
b
d mod m

d . Note that a
d ,

m
d are coprime, so this congruence has

a unique solution mod m
d , hence we have d solns mod m.

It is vital that Alice chooses a new value of k to sign each message. Suppose she sends
m1,m2 using the same value of k. Denote the signatures (r, s1) and (r, s2); note that r
depends only on k and is hence fixed.

m1 ≡ ur + ks1 mod (p− 1); m2 ≡ ur + ks2 mod (p− 1)

69

Hence,

m1 −m2 ≡ k(s1 − s2) mod (p− 1)

By the previous lemma, there are d = gcd(p− 1, s1− s2) of solutions for kmodulo p− 1.
Choose the solution that gives the correct value in the first congruence r ≡ gk mod p.
Then,

s1 ≡
m1 − ur

k
mod (p− 1)

This gives ur ≡ m1−ks1. Hence, using the lemma again, there are gcd(p−1, r) solutions
for u. Choose the solution for u that gives y ≡ gu. This allows us to deduce Alice’s
private key u, as well as the exponent k used in both messages.

Remark 21. Several existential forgeries are known, i.e. we can find solnsm, r, s to gm =
yrys mod p but with no control over m. In practice, this is stopped by signing a hash
value of the message instead of the message itself.

§5.10 The digital signature algorithm - Not Lectured

The digital signature algorithm is a variant of the Elgamal signature scheme developed
by the NSA. The public key is (p, q, g) constructed as follows.

• Let p be a prime of exactlyN bits, whereN is a multiple of 64 s.t. 512 ≤ N ≤ 1024,
so 2N−1 < p < 2N .

• Let q be a prime of 160 bits, s.t. q | p− 1.

• Let g ≡ h
p−1

q mod p, where h is a primitive rootmod p; in particular, g is an element
of order q in Z×

p .

• Alice chooses a private key xwith 1 < x < q and publishes y = gx.

Let m be a message with 0 ≤ m < q. She chooses a random k with 1 < k < q, and
computes

s1 ≡ (gk mod p) mod q; s2 ≡ k−1(m+ xs1) mod q

The signature is (s1, s2). To verify a signature, we perform the following proced-
ure. Bob computes w ≡ s−1

2 mod q, u1 ≡ mw mod q, u2 ≡ s1w mod q, and
v = (gu1yu2 mod p) mod q. He accepts the signature if v = s1.

Proposition 5.1
If a message is signed with the DSA and the message is not manipulated, the signa-
ture is accepted.

70

Proof. First, note that (m+ xs1)w = ks2s
−1
2 mod q. Now, as gq = 1 mod p,

v = (gu1yu2 mod p) mod q
= (gmwgxs1w mod p) mod q
= (g(m+xs1)w mod p) mod q
= (gk mod p) mod q
= s1

Hence, for a correctly signed message, the verification succeeds.

Suppose that Alice sends m1 to Bob and m2 to Carol, and provides signatures for each
message using the DSA. One can show that if Alice uses the same value of k for both
transmissions, it is possible for an eavesdropper to recover the private key x from the
signed messages.

§5.11 Commitment schemes

Suppose Alice wants to send a bitm ∈ {0, 1} to Bob in such a way that

1. Bob cannot determine the value ofmwithout Alice’s help; and

2. Alice cannot change the bit once she has sent it.

Such a system can be used for coin tossing: supposeAlice and Bob are in different rooms,
where Alice tosses a coin and Bob guesses the result. The result of the coin and Bob’s
guess can be viewed as messages of this form. As another example, consider a poll
whose result cannot be viewed until everyone has voted. We will see two examples of
such a commit-and-reveal strategy, known as bit commitment.

§5.11.1 Using a Public Key Cryptosystem

Suppose that we have a publicly known encryption function eA and a decryption func-
tion dA known only to Alice.
Alice makes a choice for her message m ∈ F2, and commits to Bob the ciphertext c =
eA(m). Under the assumption that the cipher is secure, Bob cannot decipher the mes-
sage.
To reveal her choice, Alice sends her private key to Bob, who can then use it to decipher
the message dA(c) = dA(eA(m)) = m. He can also check that dA, eA are inverse func-
tions and thus ensure that Alice sent the correct private key.

71

§5.11.2 Using Coding Theory - Not Lectured

Alternatively, suppose that Alice has two ways to communicate to Bob: a clear channel
which transmits with no errors, and a binary symmetric channel with error prob p. Sup-
pose 0 < p < 1

2 , and the noisy channel corrupts bits independent of any action of Alice
or Bob, so neither can affect its behaviour.

• Bob publishes a binary linear code C of length N and min dist d.

• Alice publishes a random non-trivial linear map θ : C → F2.

• To send a bit m ∈ F2, Alice chooses a random codeword c ∈ C s.t. θ(c) = m, and
sends c to Bob via the noisy channel. Bob receives r = c + e ∈ FN

2 where e is the
error pattern.

• The expected value of d(r, c) = d(e, 0) is Np. N is chosen s.t. Np � d, so Bob
cannot tell what the original codeword cwas, and hence cannot find θ(c) = m.

• To reveal, Alice sends c to Bob using the clear channel. Bob can check that d(c, r) ≈
Np; if so, he accepts the message.

• It is possible that many more or many fewer bits of c were corrupted by the noisy
channel, whichmaymake Bob reject themessage even if Alice correctly committed
and revealed the message. N, d should be chosen s.t. the prob of this occurring is
negligible.

• If it does occur, A, B repeat the process.

We have shown that Bob cannot read Alice’s guess until she reveals it. In addition, Alice
cannot cheat by changing her guess, because she knows c but not how it was corrupted
by the noisy channel. All she knows is that the received message r has distance approx-
imately Np from c. If she were to send c′ 6= c, she must ensure that d(r, c′) ≈ Np, but
the prob that this happens is small unless she chooses c′ very close to c. But any two
distinct codewords have distance at least d, so she cannot cheat.

§5.12 Secret sharing schemes - Non Examinable

Suppose that theCMS is attacked by theMIO. The Facultywill retreat to a bunker known
as MR2. Entry to MR2 is controlled by a secret, which is a positive integer S. This secret
is known only to the Leader. Each of the n members of the Faculty knows a pair of
numbers, called their shadow or share. It is required that, in the absence of the Leader,
any k members of the Faculty can reconstruct the secret from their shadows, but any
k − 1 cannot.

Definition 5.8

72

Let k, n ∈ N with k < n. A (k, n)-threshold scheme is a method of sharing a mes-
sage S among a set of n participants s.t. any subset of k participants can reconstruct
S, but no subset of smaller size can reconstruct S.

We discuss Shamir’s method for implementing such a scheme. Let 0 ≤ S ≤ N be the
secret, which can be chosen at random by the Leader. The Leader chooses and publishes
a prime p > n,N . They then choose independent random coefficients a1, . . . , ak−1 with
0 ≤ aj ≤ p−1 where we take a0 = S, and distinct integers x1, . . . , xn with 1 ≤ xj ≤ p−1.
Define

P (r) ≡ a0 +
k−1∑
j=1

ajx
j
r mod p

choosing 0 ≤ P (r) ≤ p− 1. The rth participant is given their shadow pair (xr, P (r)) to
be kept secret. The Leader can then discard their computations.

Suppose kmembers of the Faculty assemble with shadow pairs (yj , Q(j)) = (xij , P (ij))
for 1 ≤ j ≤ k. By properties of the Vandermonde determinant,

det


1 y1 · · · yk−1

1
1 y2 · · · yk−1

2
...

...
1 yk · · · yk−1

k

 =
∏

1≤j<i≤k

(yi − yj)

The yi are distinct, so this determinant does not vanish. Hence, we can uniquely solve
the system of k simultaneous equations

z0 + y1z1 + y2
1z2 + · · ·+ yk−1

k zk−1 ≡ Q(1)
z0 + y2z1 + y2

2z2 + · · ·+ yk−1
2 zk−1 ≡ Q(2)

...
z0 + ykz1 + y2

kz2 + · · ·+ yk−1
k zk−1 ≡ Q(k)

In particular, z0 = a0 = S is the secret, as (a0, . . . , ak−1) is also a solution to these
equations by construction. Suppose k − 1 people attempt to reconstruct the secret. In
this case, the Vandermonde determinant gives

det


y1 y2

1 · · · yk−1
1

y2 y2
2 · · · yk−1

2
...

...
yk−1 y2

k−1 · · · yk−1
k−1

 = y1y2 . . . yk−1
∏

1≤j<i≤k−1
(yi − yj)

This is nonzero modulo p, so the system of equations

z0 + y1z1 + y2
1z2 + · · ·+ yk−1

k zk−1 ≡ Q(1)

73

z0 + y2z1 + y2
2z2 + · · ·+ yk−1

2 zk−1 ≡ Q(2)
...

z0 + yk−1z1 + y2
k−1z2 + · · ·+ yk−1

k−1zk−1 ≡ Q(k − 1)

has solutions for z1, . . . , zk−1 regardless of the value of z0. Thus, k − 1 members of the
Faculty cannot reconstruct the secret S, or even tell which values are more likely than
others.

Remark 22. Note that a polynomial of degree k− 1 can be recovered from its values at k
points, but not on fewer points; this technique is known as Lagrange interpolation. The
secret shadow pairs can be changed without altering the secret S; the Leader simply
chooses a different random polynomial with the same constant term. Changing the
polynomial frequently can increase security, since any eavesdropper who has gathered
some shadow pairs generated from one polynomial cannot use that information to help
decrypt a different polynomial.

Example 5.8
Consider a (3, n)-threshold scheme, where ordinary workers in a company have
single shares, the vice presidents have two shares, and the Leader has three. In this
case, the secret can be recovered by any three ordinary workers, any two workers if
one of them is a vice president, or the Leader alone. In such hierarchical schemes,
the ‘importance’ of individuals determines how many of them are required to re-
cover the secret.

Example 5.9
Suppose Alice has a private key that she wishes to store securely and reliably. She
uses a (k, 2k−1)-threshold scheme, where she forms 2k−1 shadow pairs and stores
them in different locations. As long as she does not lose more than half of the pairs,
she can recover her key, hence the scheme is reliable. An eavesdropper needs to
steal more than half of the pairs in order to recover the key, hence the scheme is
secure.

74

	Modelling communication
	Noiseless coding
	Prefix-free codes
	Kraft's inequality
	McMillan's inequality
	Entropy
	Gibbs' inequality
	Optimal codes
	Huffman coding
	Joint entropy

	Noisy channels
	Decoding rules
	Error detection and correction
	Minimum Distance
	Covering Estimates
	Asymptotics
	Constructing new codes from old

	Information theory
	Sources and information rate
	Asymptotic equipartition property
	Shannon's first coding theorem
	Capacity
	Conditional entropy
	Shannon's second coding theorem
	The Kelly criterion

	Algebraic coding theory
	Linear codes
	Syndrome decoding
	Hamming codes
	Reed–Muller codes
	New codes from old (again)
	GRM Recap
	Cyclic Codes
	Reminders About Finite Fields
	BCH codes
	Decoding BCH Codes

	Shift registers
	The Berlekamp–Massey method

	Cryptography
	Cryptosystems
	Breaking cryptosystems
	One-time pad
	Asymmetric ciphers
	Rabin cryptosystem
	RSA cryptosystem
	The RSA Cryptosystem
	Secrecy and attacks
	Elgamal Signature Scheme
	The digital signature algorithm - Not Lectured
	Commitment schemes
	Using a Public Key Cryptosystem
	Using Coding Theory - Not Lectured

	Secret sharing schemes - Non Examinable

